James A. Kaduk, Megan M. Rost, Anja Dosen, Thomas N. Blanton
{"title":"阿卡布替尼二水物 Form III(C26H23N7O2(H2O)2)的粉末 X 射线衍射","authors":"James A. Kaduk, Megan M. Rost, Anja Dosen, Thomas N. Blanton","doi":"10.1017/s0885715624000265","DOIUrl":null,"url":null,"abstract":"The crystal structure of acalabrutinib dihydrate Form III has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Acalabrutinib dihydrate Form III crystallizes in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub> (#4) with <jats:italic>a</jats:italic> = 8.38117(5), <jats:italic>b</jats:italic> = 21.16085(14), <jats:italic>c</jats:italic> = 14.12494(16) Å, <jats:italic>β</jats:italic> = 94.5343(6)°, <jats:italic>V</jats:italic> = 2497.256(20) Å<jats:sup>3</jats:sup>, and <jats:italic>Z</jats:italic> = 4 (<jats:italic>Z′</jats:italic> = 2) at 295 K. The crystal structure consists of herringbone layers parallel to the <jats:italic>ac</jats:italic>-plane. Hydrogen bonds between the acalabrutinib and water molecules generate a three-dimensional framework. Each water molecule acts as a donor in two hydrogen bonds and as an acceptor in at least one hydrogen bond. Amino groups and pyridine N atoms link the acalabrutinib molecules into dimers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"23 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Powder X-ray diffraction of acalabrutinib dihydrate Form III, C26H23N7O2(H2O)2\",\"authors\":\"James A. Kaduk, Megan M. Rost, Anja Dosen, Thomas N. Blanton\",\"doi\":\"10.1017/s0885715624000265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structure of acalabrutinib dihydrate Form III has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Acalabrutinib dihydrate Form III crystallizes in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub> (#4) with <jats:italic>a</jats:italic> = 8.38117(5), <jats:italic>b</jats:italic> = 21.16085(14), <jats:italic>c</jats:italic> = 14.12494(16) Å, <jats:italic>β</jats:italic> = 94.5343(6)°, <jats:italic>V</jats:italic> = 2497.256(20) Å<jats:sup>3</jats:sup>, and <jats:italic>Z</jats:italic> = 4 (<jats:italic>Z′</jats:italic> = 2) at 295 K. The crystal structure consists of herringbone layers parallel to the <jats:italic>ac</jats:italic>-plane. Hydrogen bonds between the acalabrutinib and water molecules generate a three-dimensional framework. Each water molecule acts as a donor in two hydrogen bonds and as an acceptor in at least one hydrogen bond. Amino groups and pyridine N atoms link the acalabrutinib molecules into dimers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/s0885715624000265\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715624000265","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
利用同步辐射 X 射线粉末衍射数据完善了阿卡布替尼二水物形式 III 的晶体结构,并利用密度泛函技术对其进行了优化。阿卡布替尼二水物III在295 K时的空间群为P21(#4),a = 8.38117(5),b = 21.16085(14),c = 14.12494(16)埃,β = 94.5343(6)°,V = 2497.256(20)埃3,Z = 4 (Z′ = 2)。阿卡布替尼和水分子之间的氢键形成了一个三维框架。每个水分子在两个氢键中充当供体,在至少一个氢键中充当受体。氨基和吡啶 N 原子将阿卡布替尼分子连接成二聚体。该粉末图样已提交给 ICDD,以便纳入粉末衍射文件™ (PDF®)。
Powder X-ray diffraction of acalabrutinib dihydrate Form III, C26H23N7O2(H2O)2
The crystal structure of acalabrutinib dihydrate Form III has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Acalabrutinib dihydrate Form III crystallizes in space group P21 (#4) with a = 8.38117(5), b = 21.16085(14), c = 14.12494(16) Å, β = 94.5343(6)°, V = 2497.256(20) Å3, and Z = 4 (Z′ = 2) at 295 K. The crystal structure consists of herringbone layers parallel to the ac-plane. Hydrogen bonds between the acalabrutinib and water molecules generate a three-dimensional framework. Each water molecule acts as a donor in two hydrogen bonds and as an acceptor in at least one hydrogen bond. Amino groups and pyridine N atoms link the acalabrutinib molecules into dimers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).