Nguyen Canh Hung, Thai Doan Chuong, Nguyen Le Hoang Anh
{"title":"涉及封闭集交集的稳健优化问题的最优性和对偶性","authors":"Nguyen Canh Hung, Thai Doan Chuong, Nguyen Le Hoang Anh","doi":"10.1007/s10957-024-02447-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a robust optimization problem whose constraints include nonsmooth and nonconvex functions and the intersection of closed sets. Using advanced variational analysis tools, we first provide necessary conditions for the optimality of the robust optimization problem. We then establish sufficient conditions for the optimality of the considered problem under the assumption of generalized convexity. In addition, we present a dual problem to the primal robust optimization problem and examine duality relations.\n</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"28 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets\",\"authors\":\"Nguyen Canh Hung, Thai Doan Chuong, Nguyen Le Hoang Anh\",\"doi\":\"10.1007/s10957-024-02447-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a robust optimization problem whose constraints include nonsmooth and nonconvex functions and the intersection of closed sets. Using advanced variational analysis tools, we first provide necessary conditions for the optimality of the robust optimization problem. We then establish sufficient conditions for the optimality of the considered problem under the assumption of generalized convexity. In addition, we present a dual problem to the primal robust optimization problem and examine duality relations.\\n</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02447-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02447-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimality and Duality for Robust Optimization Problems Involving Intersection of Closed Sets
In this paper, we study a robust optimization problem whose constraints include nonsmooth and nonconvex functions and the intersection of closed sets. Using advanced variational analysis tools, we first provide necessary conditions for the optimality of the robust optimization problem. We then establish sufficient conditions for the optimality of the considered problem under the assumption of generalized convexity. In addition, we present a dual problem to the primal robust optimization problem and examine duality relations.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.