{"title":"一些旗束上的塞沙德里常数","authors":"Krishna Hanumanthu, Jagadish Pine","doi":"10.1142/s0129167x24500332","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> be a smooth complex projective curve and let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> be a vector bundle on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> which is not semistable. We consider a flag bundle <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi><mo>:</mo><mstyle><mtext mathvariant=\"normal\">Fl</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo>→</mo><mi>X</mi></math></span><span></span> parametrizing certain flags of fibers of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. The dimensions of the successive quotients of the flags are determined by the ranks of vector bundles appearing in the Harder–Narasimhan filtration of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. We compute the Seshadri constants of nef line bundles on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Fl</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"45 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seshadri constants on some flag bundles\",\"authors\":\"Krishna Hanumanthu, Jagadish Pine\",\"doi\":\"10.1142/s0129167x24500332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> be a smooth complex projective curve and let <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> be a vector bundle on <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>X</mi></math></span><span></span> which is not semistable. We consider a flag bundle <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>π</mi><mo>:</mo><mstyle><mtext mathvariant=\\\"normal\\\">Fl</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo>→</mo><mi>X</mi></math></span><span></span> parametrizing certain flags of fibers of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>. The dimensions of the successive quotients of the flags are determined by the ranks of vector bundles appearing in the Harder–Narasimhan filtration of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>. We compute the Seshadri constants of nef line bundles on <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">Fl</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500332\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500332","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 X 是光滑的复投影曲线,E 是 X 上的向量束,它不是半稳态的。我们认为旗束π:Fl(E)→X 参数化了 E 纤维的某些旗。旗的连续商的维数由 E 的 Harder-Narasimhan 滤波中出现的向量束的等级决定。
Let be a smooth complex projective curve and let be a vector bundle on which is not semistable. We consider a flag bundle parametrizing certain flags of fibers of . The dimensions of the successive quotients of the flags are determined by the ranks of vector bundles appearing in the Harder–Narasimhan filtration of . We compute the Seshadri constants of nef line bundles on .
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.