{"title":"具有制度转换功能的最佳研发投资问题","authors":"Ming-hui Wang, Jia Yue, Nan-jing Huang","doi":"10.1007/s10957-024-02451-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the optimal research and development (R &D) investment problem under the framework of real options in a regime-switching environment. We assume that the firm has an R &D project whose input process with technical uncertainty is affected by different regimes. By the method of dynamic programming, we have obtained the related Hamilton–Jacobi–Bellman (HJB) equation and solved it in three different cases. Then, the optimal solution for our model is constructed and the related verification theorem is also provided. Finally, some numerical examples are given to investigate the properties of our model.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"54 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal R &D Investment Problem with Regime-Switching\",\"authors\":\"Ming-hui Wang, Jia Yue, Nan-jing Huang\",\"doi\":\"10.1007/s10957-024-02451-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the optimal research and development (R &D) investment problem under the framework of real options in a regime-switching environment. We assume that the firm has an R &D project whose input process with technical uncertainty is affected by different regimes. By the method of dynamic programming, we have obtained the related Hamilton–Jacobi–Bellman (HJB) equation and solved it in three different cases. Then, the optimal solution for our model is constructed and the related verification theorem is also provided. Finally, some numerical examples are given to investigate the properties of our model.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02451-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02451-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal R &D Investment Problem with Regime-Switching
In this paper, we study the optimal research and development (R &D) investment problem under the framework of real options in a regime-switching environment. We assume that the firm has an R &D project whose input process with technical uncertainty is affected by different regimes. By the method of dynamic programming, we have obtained the related Hamilton–Jacobi–Bellman (HJB) equation and solved it in three different cases. Then, the optimal solution for our model is constructed and the related verification theorem is also provided. Finally, some numerical examples are given to investigate the properties of our model.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.