{"title":"拉多加湖离子成分的变化趋势","authors":"M. A. Guseva, V. Yu. Shmakova","doi":"10.3103/s1068373924030087","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The sum of ions of the basic Lake Ladoga water mass has varied quite significantly from 55.6 to 71.6 mg/L over the past 60 years. In the present paper, separate periods of the mineralization growth are identified. It is shown that the change in the mineralization of Lake Ladoga has been always accompanied by a significant change in the ratio of basic ion concentrations. Any significant trends in the total mineralization of Lake Ladoga over the analyzed period have not been identified, but periods of the growth and decrease in the number of ions have been revealed. Until 1998, the periods of increased mineralization, as a rule, were accompanied by an increase in concentrations of <span>\\(\\rm SO_4^{2-}\\)</span> and <span>\\(\\rm Cl^{-}\\)</span>, most likely coming from the catchment area due to industrial and household pollution. During 2009–2019, the mineralization was growing mainly due to an increase in the absolute and relative concentrations of <span>\\(\\rm HCO_3^-\\)</span>. At the same time, the concentration of dissolved CO<sub>2</sub> in the main water mass of the lake also was increasing (and, consequently, pH was decreasing). Thus, the changes in the bicarbonate ion concentration in the water of Lake Ladoga may be largely determined by an increase in its inflow from the catchment area, whose possible reason is the enhancement of the chemical weathering of carbonate rocks due to the increasing concentrations of dissolved <span>\\(\\rm CO_2\\)</span> in the water.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends in the Ionic Composition of Lake Ladoga\",\"authors\":\"M. A. Guseva, V. Yu. Shmakova\",\"doi\":\"10.3103/s1068373924030087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The sum of ions of the basic Lake Ladoga water mass has varied quite significantly from 55.6 to 71.6 mg/L over the past 60 years. In the present paper, separate periods of the mineralization growth are identified. It is shown that the change in the mineralization of Lake Ladoga has been always accompanied by a significant change in the ratio of basic ion concentrations. Any significant trends in the total mineralization of Lake Ladoga over the analyzed period have not been identified, but periods of the growth and decrease in the number of ions have been revealed. Until 1998, the periods of increased mineralization, as a rule, were accompanied by an increase in concentrations of <span>\\\\(\\\\rm SO_4^{2-}\\\\)</span> and <span>\\\\(\\\\rm Cl^{-}\\\\)</span>, most likely coming from the catchment area due to industrial and household pollution. During 2009–2019, the mineralization was growing mainly due to an increase in the absolute and relative concentrations of <span>\\\\(\\\\rm HCO_3^-\\\\)</span>. At the same time, the concentration of dissolved CO<sub>2</sub> in the main water mass of the lake also was increasing (and, consequently, pH was decreasing). Thus, the changes in the bicarbonate ion concentration in the water of Lake Ladoga may be largely determined by an increase in its inflow from the catchment area, whose possible reason is the enhancement of the chemical weathering of carbonate rocks due to the increasing concentrations of dissolved <span>\\\\(\\\\rm CO_2\\\\)</span> in the water.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373924030087\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924030087","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 在过去的 60 年中,拉多加湖基本水体的离子总和在 55.6 至 71.6 毫克/升之间变化很大。本文确定了矿化度增长的不同时期。结果表明,拉多加湖矿化度的变化始终伴随着碱性离子浓度比例的显著变化。在分析期间,拉多加湖总矿化度的任何重要趋势都没有被发现,但离子数量的增长和减少时期却被揭示出来。在1998年之前,矿化度增加的时期通常伴随着\(\rm SO_4^{2-}\)和\(\rm Cl^{-}\)浓度的增加,这很可能是由于工业和家庭污染而来自集水区。在 2009-2019 年期间,矿化度的增长主要是由于 \(\rm HCO_3^^-\) 的绝对浓度和相对浓度的增加。与此同时,湖泊主要水体中溶解的 CO2 浓度也在增加(pH 值随之下降)。因此,拉多加湖水体中碳酸氢根离子浓度的变化可能在很大程度上是由汇水区流入量的增加决定的,其可能的原因是由于水体中溶解的 CO2 浓度增加,碳酸盐岩的化学风化作用增强。
The sum of ions of the basic Lake Ladoga water mass has varied quite significantly from 55.6 to 71.6 mg/L over the past 60 years. In the present paper, separate periods of the mineralization growth are identified. It is shown that the change in the mineralization of Lake Ladoga has been always accompanied by a significant change in the ratio of basic ion concentrations. Any significant trends in the total mineralization of Lake Ladoga over the analyzed period have not been identified, but periods of the growth and decrease in the number of ions have been revealed. Until 1998, the periods of increased mineralization, as a rule, were accompanied by an increase in concentrations of \(\rm SO_4^{2-}\) and \(\rm Cl^{-}\), most likely coming from the catchment area due to industrial and household pollution. During 2009–2019, the mineralization was growing mainly due to an increase in the absolute and relative concentrations of \(\rm HCO_3^-\). At the same time, the concentration of dissolved CO2 in the main water mass of the lake also was increasing (and, consequently, pH was decreasing). Thus, the changes in the bicarbonate ion concentration in the water of Lake Ladoga may be largely determined by an increase in its inflow from the catchment area, whose possible reason is the enhancement of the chemical weathering of carbonate rocks due to the increasing concentrations of dissolved \(\rm CO_2\) in the water.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.