由(q_{\lambda}\)算子在(ell _{p}\)空间中派生的序列空间及其几何特性

IF 1.5 3区 数学 Q1 MATHEMATICS
Naim L. Braha, Taja Yaying, Mohammad Mursaleen
{"title":"由(q_{\\lambda}\\)算子在(ell _{p}\\)空间中派生的序列空间及其几何特性","authors":"Naim L. Braha, Taja Yaying, Mohammad Mursaleen","doi":"10.1186/s13660-024-03149-7","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a novel category of sequence spaces $\\ell _{p}^{q_{\\lambda}}$ and $\\ell _{\\infty}^{q_{\\lambda}}$ by utlizing q-analogue $\\Lambda^{q}$ of Λ-matrix. Our investigation outlines several topological characteristics and inclusion results of these newly introduced sequence spaces, specifically identifying them as BK-spaces. Subsequently, we demonstrate that these novel sequence spaces are of nonabsolute type and establish their isometric isomorphism with $\\ell _{p}$ and $\\ell _{\\infty}$ . Moreover, we obtain the α-, β-, and γ-duals of these sequence spaces. We further characterize the class $(\\ell _{p}^{q_{\\lambda}},X)$ of matrices, where X is any of the spaces $\\ell _{\\infty }$ , c, or $c_{0}$ . Lastly, our study delves into the exploration of specific geometric properties exhibited by the space $\\ell _{p}^{q_{\\lambda}}$ .","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence spaces derived by \\\\(q_{\\\\lambda}\\\\) operators in \\\\(\\\\ell _{p}\\\\) spaces and their geometric properties\",\"authors\":\"Naim L. Braha, Taja Yaying, Mohammad Mursaleen\",\"doi\":\"10.1186/s13660-024-03149-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish a novel category of sequence spaces $\\\\ell _{p}^{q_{\\\\lambda}}$ and $\\\\ell _{\\\\infty}^{q_{\\\\lambda}}$ by utlizing q-analogue $\\\\Lambda^{q}$ of Λ-matrix. Our investigation outlines several topological characteristics and inclusion results of these newly introduced sequence spaces, specifically identifying them as BK-spaces. Subsequently, we demonstrate that these novel sequence spaces are of nonabsolute type and establish their isometric isomorphism with $\\\\ell _{p}$ and $\\\\ell _{\\\\infty}$ . Moreover, we obtain the α-, β-, and γ-duals of these sequence spaces. We further characterize the class $(\\\\ell _{p}^{q_{\\\\lambda}},X)$ of matrices, where X is any of the spaces $\\\\ell _{\\\\infty }$ , c, or $c_{0}$ . Lastly, our study delves into the exploration of specific geometric properties exhibited by the space $\\\\ell _{p}^{q_{\\\\lambda}}$ .\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03149-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03149-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过利用Λ-矩阵的 q-analogue $\Lambda^{q}$ 建立了一类新的序列空间 $\ell _{p}^{q_{\lambda}}$ 和 $\ell _{\infty}^{q_{\lambda}}$ 。我们的研究概述了这些新引入序列空间的几个拓扑特征和包含结果,特别是将它们确定为 BK 空间。随后,我们证明了这些新序列空间是非绝对类型的,并建立了它们与 $\ell _{p}$ 和 $\ell _{infty}$ 的等距同构关系。此外,我们还得到了这些序列空间的 α-、β- 和 γ 二重。我们进一步描述了矩阵类 $(\ell _{p}^{q_{\lambda}},X)$ 的特征,其中 X 是 $\ell _{\infty }$ 、c 或 $c_{0}$ 中的任意空间。最后,我们的研究深入探讨了 $\ell _{p}^{q_{\lambda}}$ 空间所展示的特定几何特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence spaces derived by \(q_{\lambda}\) operators in \(\ell _{p}\) spaces and their geometric properties
In this paper, we establish a novel category of sequence spaces $\ell _{p}^{q_{\lambda}}$ and $\ell _{\infty}^{q_{\lambda}}$ by utlizing q-analogue $\Lambda^{q}$ of Λ-matrix. Our investigation outlines several topological characteristics and inclusion results of these newly introduced sequence spaces, specifically identifying them as BK-spaces. Subsequently, we demonstrate that these novel sequence spaces are of nonabsolute type and establish their isometric isomorphism with $\ell _{p}$ and $\ell _{\infty}$ . Moreover, we obtain the α-, β-, and γ-duals of these sequence spaces. We further characterize the class $(\ell _{p}^{q_{\lambda}},X)$ of matrices, where X is any of the spaces $\ell _{\infty }$ , c, or $c_{0}$ . Lastly, our study delves into the exploration of specific geometric properties exhibited by the space $\ell _{p}^{q_{\lambda}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信