一类带粘弹性项的奇异抛物方程的全局存在性和膨胀解

IF 1.9 3区 数学 Q1 MATHEMATICS
Yanchao Gao, Wenxu Jia, Zhixin Feng
{"title":"一类带粘弹性项的奇异抛物方程的全局存在性和膨胀解","authors":"Yanchao Gao, Wenxu Jia, Zhixin Feng","doi":"10.1155/2024/5754129","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the initial boundary value problem for a class of singular parabolic equations with viscoelastic term and logarithmic term. By using the technique of cut-off and the method of Faedo-Galerkin approximation, the local existence of the weak solution is established. Based on the potential well method, the global existence of the weak solution is derived. Furthermore, we prove that the weak solution blows up in finite time by taking the concavity analysis method.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence and Blow-up of Solutions for a Class of Singular Parabolic Equations with Viscoelastic Term\",\"authors\":\"Yanchao Gao, Wenxu Jia, Zhixin Feng\",\"doi\":\"10.1155/2024/5754129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the initial boundary value problem for a class of singular parabolic equations with viscoelastic term and logarithmic term. By using the technique of cut-off and the method of Faedo-Galerkin approximation, the local existence of the weak solution is established. Based on the potential well method, the global existence of the weak solution is derived. Furthermore, we prove that the weak solution blows up in finite time by taking the concavity analysis method.\",\"PeriodicalId\":15840,\"journal\":{\"name\":\"Journal of Function Spaces\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Function Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5754129\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/5754129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一类带粘弹性项和对数项的奇异抛物方程的初始边界值问题。利用截断技术和 Faedo-Galerkin 近似方法,建立了弱解的局部存在性。基于势阱法,得出了弱解的全局存在性。此外,我们还利用凹性分析方法证明了弱解在有限时间内爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Blow-up of Solutions for a Class of Singular Parabolic Equations with Viscoelastic Term
In this paper, we consider the initial boundary value problem for a class of singular parabolic equations with viscoelastic term and logarithmic term. By using the technique of cut-off and the method of Faedo-Galerkin approximation, the local existence of the weak solution is established. Based on the potential well method, the global existence of the weak solution is derived. Furthermore, we prove that the weak solution blows up in finite time by taking the concavity analysis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信