利用机器学习和逆重正化群生成晶格尺寸不断增大的构型

Dimitrios Bachtis
{"title":"利用机器学习和逆重正化群生成晶格尺寸不断增大的构型","authors":"Dimitrios Bachtis","doi":"arxiv-2405.16288","DOIUrl":null,"url":null,"abstract":"We review recent developments of machine learning algorithms pertinent to the\ninverse renormalization group, which was originally established as a generative\nnumerical method by Ron-Swendsen-Brandt via the implementation of compatible\nMonte Carlo simulations. Inverse renormalization group methods enable the\niterative generation of configurations for increasing lattice size without the\ncritical slowing down effect. We discuss the construction of inverse\nrenormalization group transformations with the use of convolutional neural\nnetworks and present applications in models of statistical mechanics, lattice\nfield theory, and disordered systems. We highlight the case of the\nthree-dimensional Edwards-Anderson spin glass, where the inverse\nrenormalization group can be employed to construct configurations for lattice\nvolumes that have not yet been accessed by dedicated supercomputers.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating configurations of increasing lattice size with machine learning and the inverse renormalization group\",\"authors\":\"Dimitrios Bachtis\",\"doi\":\"arxiv-2405.16288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review recent developments of machine learning algorithms pertinent to the\\ninverse renormalization group, which was originally established as a generative\\nnumerical method by Ron-Swendsen-Brandt via the implementation of compatible\\nMonte Carlo simulations. Inverse renormalization group methods enable the\\niterative generation of configurations for increasing lattice size without the\\ncritical slowing down effect. We discuss the construction of inverse\\nrenormalization group transformations with the use of convolutional neural\\nnetworks and present applications in models of statistical mechanics, lattice\\nfield theory, and disordered systems. We highlight the case of the\\nthree-dimensional Edwards-Anderson spin glass, where the inverse\\nrenormalization group can be employed to construct configurations for lattice\\nvolumes that have not yet been accessed by dedicated supercomputers.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.16288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们回顾了与逆重正化群相关的机器学习算法的最新发展,逆重正化群最初是由 Ron-Swendsen-Brandt 通过实施兼容蒙特卡罗模拟而建立的一种生成数值方法。逆重正化群方法能够在晶格尺寸不断增大的情况下迭代生成配置,而不会产生临界减速效应。我们讨论了利用卷积神经网络构建反规范化群变换,并介绍了在统计力学、晶格场理论和无序系统模型中的应用。我们重点介绍了三维爱德华兹-安德森自旋玻璃的案例,在这个案例中,逆正化群可用于构建尚未被专用超级计算机访问的晶格场配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating configurations of increasing lattice size with machine learning and the inverse renormalization group
We review recent developments of machine learning algorithms pertinent to the inverse renormalization group, which was originally established as a generative numerical method by Ron-Swendsen-Brandt via the implementation of compatible Monte Carlo simulations. Inverse renormalization group methods enable the iterative generation of configurations for increasing lattice size without the critical slowing down effect. We discuss the construction of inverse renormalization group transformations with the use of convolutional neural networks and present applications in models of statistical mechanics, lattice field theory, and disordered systems. We highlight the case of the three-dimensional Edwards-Anderson spin glass, where the inverse renormalization group can be employed to construct configurations for lattice volumes that have not yet been accessed by dedicated supercomputers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信