{"title":"瓦瑟斯坦空间上的艾克纳方程粘度解","authors":"H. Mete Soner, Qinxin Yan","doi":"10.1007/s00245-024-10145-2","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic programming equations for mean field control problems with a separable structure are Eikonal type equations on the Wasserstein space. Standard differentiation using linear derivatives yield a direct extension of the classical viscosity theory. We use Fourier representation of the Sobolev norms on the space of measures, together with the standard techniques from the finite dimensional theory to prove a comparison result among semi-continuous sub and super solutions, obtaining a unique characterization of the value function.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity Solutions of the Eikonal Equation on the Wasserstein Space\",\"authors\":\"H. Mete Soner, Qinxin Yan\",\"doi\":\"10.1007/s00245-024-10145-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic programming equations for mean field control problems with a separable structure are Eikonal type equations on the Wasserstein space. Standard differentiation using linear derivatives yield a direct extension of the classical viscosity theory. We use Fourier representation of the Sobolev norms on the space of measures, together with the standard techniques from the finite dimensional theory to prove a comparison result among semi-continuous sub and super solutions, obtaining a unique characterization of the value function.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10145-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10145-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Viscosity Solutions of the Eikonal Equation on the Wasserstein Space
Dynamic programming equations for mean field control problems with a separable structure are Eikonal type equations on the Wasserstein space. Standard differentiation using linear derivatives yield a direct extension of the classical viscosity theory. We use Fourier representation of the Sobolev norms on the space of measures, together with the standard techniques from the finite dimensional theory to prove a comparison result among semi-continuous sub and super solutions, obtaining a unique characterization of the value function.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.