自来水、去离子水、工业废水和人体血浆中作为 Al+3 选择性探针的 Grewia asiatica 稳定银纳米粒子的合成与表征

IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nasreen Begum, Itrat Anis, Shazia Haider, Tabinda Zarreen Mallick, Muhammad Iqbal Chaudhary
{"title":"自来水、去离子水、工业废水和人体血浆中作为 Al+3 选择性探针的 Grewia asiatica 稳定银纳米粒子的合成与表征","authors":"Nasreen Begum, Itrat Anis, Shazia Haider, Tabinda Zarreen Mallick, Muhammad Iqbal Chaudhary","doi":"10.1155/2024/9961114","DOIUrl":null,"url":null,"abstract":"Aluminum can be found in water and vegetables in the form of the trivalent ion (Al<sup>3+</sup>), which can potentially contaminate food and water. Overconsumption of aluminum can lead to serious health problems in humans. Therefore, there is a need for an economical and simple procedure to detect the presence of aluminum. In this study, we synthesized a conjugate of <i>Grewia asiatica</i> extract with silver nanoparticles. The nanoparticle-stabilized fruit extract of <i>Grewia asiatica</i> was found to be an extremely selective sensor of Al<sup>3+</sup> in tap water, DI water, industrial wastewater, and human blood plasma. We characterized the <i>Grewia asiatica</i>-conjugated silver nanoparticles (GA-AgNPs) using UV-visible, SEM, and AFM techniques and found that they were stable in an extensive pH range and different electrolyte concentrations up to 10 M NaCl. The GA-AgNPs were circular in shape with typical particle sizes of 65–97 nm. We inspected the photo physical properties of GA-AgNPs concerning metallic ions using UV-visible spectroscopy and found that they were highly selective for Al<sup>3+</sup> ions, with no interfering ions detected in competitive experimentation. The absorption intensity of GA-AgNPs was directly related to Al<sup>3+</sup> concentration over a wide range of concentrations (6.25–500 <i>μ</i>M). Jobs plot experiment displayed 1 : 1 binding stoichiometry between GA-AgNPs, and Al<sup>3+</sup>. Additionally, GA-AgNPs were effectively utilized for the recognition of Al<sup>3+</sup> in laboratory tap water, DI water, industrial wastewater, and human blood plasma.","PeriodicalId":15348,"journal":{"name":"Journal of Chemistry","volume":"97 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Grewia asiatica-Stabilized Silver Nanoparticle as a Selective Probe for Al+3 in Tap, Deionized, Industrial Waste Water and Human Blood Plasma\",\"authors\":\"Nasreen Begum, Itrat Anis, Shazia Haider, Tabinda Zarreen Mallick, Muhammad Iqbal Chaudhary\",\"doi\":\"10.1155/2024/9961114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum can be found in water and vegetables in the form of the trivalent ion (Al<sup>3+</sup>), which can potentially contaminate food and water. Overconsumption of aluminum can lead to serious health problems in humans. Therefore, there is a need for an economical and simple procedure to detect the presence of aluminum. In this study, we synthesized a conjugate of <i>Grewia asiatica</i> extract with silver nanoparticles. The nanoparticle-stabilized fruit extract of <i>Grewia asiatica</i> was found to be an extremely selective sensor of Al<sup>3+</sup> in tap water, DI water, industrial wastewater, and human blood plasma. We characterized the <i>Grewia asiatica</i>-conjugated silver nanoparticles (GA-AgNPs) using UV-visible, SEM, and AFM techniques and found that they were stable in an extensive pH range and different electrolyte concentrations up to 10 M NaCl. The GA-AgNPs were circular in shape with typical particle sizes of 65–97 nm. We inspected the photo physical properties of GA-AgNPs concerning metallic ions using UV-visible spectroscopy and found that they were highly selective for Al<sup>3+</sup> ions, with no interfering ions detected in competitive experimentation. The absorption intensity of GA-AgNPs was directly related to Al<sup>3+</sup> concentration over a wide range of concentrations (6.25–500 <i>μ</i>M). Jobs plot experiment displayed 1 : 1 binding stoichiometry between GA-AgNPs, and Al<sup>3+</sup>. Additionally, GA-AgNPs were effectively utilized for the recognition of Al<sup>3+</sup> in laboratory tap water, DI water, industrial wastewater, and human blood plasma.\",\"PeriodicalId\":15348,\"journal\":{\"name\":\"Journal of Chemistry\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9961114\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/9961114","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铝以三价离子(Al3+)的形式存在于水和蔬菜中,有可能污染食物和水。过量摄入铝会导致严重的人体健康问题。因此,需要一种经济、简单的方法来检测铝的存在。在这项研究中,我们合成了一种银纳米粒子与豚草提取物的共轭物。研究发现,纳米颗粒稳定的芒果提取物对自来水、去离子水、工业废水和人体血浆中的 Al3+ 具有极高的选择性。我们利用紫外可见光、扫描电镜和原子力显微镜技术对天南星果实共轭银纳米粒子(GA-AgNPs)进行了表征,发现它们在广泛的 pH 值范围和高达 10 M NaCl 的不同电解质浓度下都很稳定。GA-AgNPs 呈圆形,典型粒径为 65-97 nm。我们利用紫外可见光谱检测了 GA-AgNPs 有关金属离子的光物理性质,发现它们对 Al3+ 离子具有高度选择性,在竞争性实验中未检测到干扰离子。在很宽的浓度范围(6.25-500 μM)内,GA-AgNPs 的吸收强度与 Al3+ 浓度直接相关。乔布斯图实验显示,GA-AgNPs 与 Al3+ 的结合比例为 1 :1 的结合比例。此外,GA-AgNPs 还能有效识别实验室自来水、去离子水、工业废水和人体血浆中的 Al3+。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization of Grewia asiatica-Stabilized Silver Nanoparticle as a Selective Probe for Al+3 in Tap, Deionized, Industrial Waste Water and Human Blood Plasma
Aluminum can be found in water and vegetables in the form of the trivalent ion (Al3+), which can potentially contaminate food and water. Overconsumption of aluminum can lead to serious health problems in humans. Therefore, there is a need for an economical and simple procedure to detect the presence of aluminum. In this study, we synthesized a conjugate of Grewia asiatica extract with silver nanoparticles. The nanoparticle-stabilized fruit extract of Grewia asiatica was found to be an extremely selective sensor of Al3+ in tap water, DI water, industrial wastewater, and human blood plasma. We characterized the Grewia asiatica-conjugated silver nanoparticles (GA-AgNPs) using UV-visible, SEM, and AFM techniques and found that they were stable in an extensive pH range and different electrolyte concentrations up to 10 M NaCl. The GA-AgNPs were circular in shape with typical particle sizes of 65–97 nm. We inspected the photo physical properties of GA-AgNPs concerning metallic ions using UV-visible spectroscopy and found that they were highly selective for Al3+ ions, with no interfering ions detected in competitive experimentation. The absorption intensity of GA-AgNPs was directly related to Al3+ concentration over a wide range of concentrations (6.25–500 μM). Jobs plot experiment displayed 1 : 1 binding stoichiometry between GA-AgNPs, and Al3+. Additionally, GA-AgNPs were effectively utilized for the recognition of Al3+ in laboratory tap water, DI water, industrial wastewater, and human blood plasma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemistry
Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
3.30%
发文量
345
审稿时长
16 weeks
期刊介绍: Journal of Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信