{"title":"关于鲁明复合体的热核和卡尔德龙再现公式","authors":"Paolo Ciatti, Bruno Franchi, Yannick Sire","doi":"10.1515/agms-2024-0002","DOIUrl":null,"url":null,"abstract":"We derive several properties of the heat equation with the Hodge operator associated with the Rumin’s complex on Heisenberg groups and prove several properties of the fundamental solution. As an application, we use the heat kernel for Rumin’s differential forms to construct a Calderón reproducing formula on Rumin’s forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the heat kernel of the Rumin complex and Calderón reproducing formula\",\"authors\":\"Paolo Ciatti, Bruno Franchi, Yannick Sire\",\"doi\":\"10.1515/agms-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive several properties of the heat equation with the Hodge operator associated with the Rumin’s complex on Heisenberg groups and prove several properties of the fundamental solution. As an application, we use the heat kernel for Rumin’s differential forms to construct a Calderón reproducing formula on Rumin’s forms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2024-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the heat kernel of the Rumin complex and Calderón reproducing formula
We derive several properties of the heat equation with the Hodge operator associated with the Rumin’s complex on Heisenberg groups and prove several properties of the fundamental solution. As an application, we use the heat kernel for Rumin’s differential forms to construct a Calderón reproducing formula on Rumin’s forms.