{"title":"湿润和干燥周期对荼秸灰稳定膨胀土行为的影响","authors":"Sisay Birhanu Moges, Eleyas Assefa, S. M. Assefa","doi":"10.1155/2024/8034380","DOIUrl":null,"url":null,"abstract":"This study explores the impact of wetting and drying cycles on teff straw ash-stabilized expansive soil, with a focus on enhancing its mechanical properties for road subgrade applications. Expansive soil, characterized by continuous swell and shrink behavior, undergoes cyclic testing to establish equilibrium and critical density. The mitigating effects of teff straw ash on soil damage and its influence on expansive soil’s mechanical attributes are investigated. Laboratory results classify natural expansive soil as A-7-5 and CH according to AASHTO and USCS standards, respectively. Using a one-dimensional odometer apparatus, six wetting–drying cycles are conducted on teff straw ash-stabilized expansive soil to observe its behavior at equilibrium. Scanning electron microscopy reveals a disordered bond between soil particles and teff straw ash, intensifying with increased wetting–drying cycles. X-ray diffraction analysis is performed on samples subjected to different curing times, indicating heightened cation exchange and pozzolanic reactions as curing duration increases, thereby reducing soil expansiveness. A 96-hr socked California Bearing Ratio (CBR) test assesses subgrade strength. The CBR values for natural soil fall below the Ethiopian Road Authority (ERA) standards for low-volume roads. In contrast, expansive soil stabilized with teff straw ash at 10%, 15%, and 20% exhibits substantial increases in CBR values (3.7, 6.7, and 8.9, respectively), meeting the ERA standards. This suggests that teff straw ash stabilization renders expansive soil suitable for low-volume road subgrades, aligning with ERA standards. This comprehensive study provides valuable insights into the potential use of teff straw ash as an effective stabilizer for expansive soils, offering sustainable solutions for road construction in regions characterized by expansive soil challenges.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Wetting and Drying Cycle on the Behavior of Teff Straw Ash-Stabilized Expansive Soil\",\"authors\":\"Sisay Birhanu Moges, Eleyas Assefa, S. M. Assefa\",\"doi\":\"10.1155/2024/8034380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the impact of wetting and drying cycles on teff straw ash-stabilized expansive soil, with a focus on enhancing its mechanical properties for road subgrade applications. Expansive soil, characterized by continuous swell and shrink behavior, undergoes cyclic testing to establish equilibrium and critical density. The mitigating effects of teff straw ash on soil damage and its influence on expansive soil’s mechanical attributes are investigated. Laboratory results classify natural expansive soil as A-7-5 and CH according to AASHTO and USCS standards, respectively. Using a one-dimensional odometer apparatus, six wetting–drying cycles are conducted on teff straw ash-stabilized expansive soil to observe its behavior at equilibrium. Scanning electron microscopy reveals a disordered bond between soil particles and teff straw ash, intensifying with increased wetting–drying cycles. X-ray diffraction analysis is performed on samples subjected to different curing times, indicating heightened cation exchange and pozzolanic reactions as curing duration increases, thereby reducing soil expansiveness. A 96-hr socked California Bearing Ratio (CBR) test assesses subgrade strength. The CBR values for natural soil fall below the Ethiopian Road Authority (ERA) standards for low-volume roads. In contrast, expansive soil stabilized with teff straw ash at 10%, 15%, and 20% exhibits substantial increases in CBR values (3.7, 6.7, and 8.9, respectively), meeting the ERA standards. This suggests that teff straw ash stabilization renders expansive soil suitable for low-volume road subgrades, aligning with ERA standards. This comprehensive study provides valuable insights into the potential use of teff straw ash as an effective stabilizer for expansive soils, offering sustainable solutions for road construction in regions characterized by expansive soil challenges.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8034380\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8034380","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effect of Wetting and Drying Cycle on the Behavior of Teff Straw Ash-Stabilized Expansive Soil
This study explores the impact of wetting and drying cycles on teff straw ash-stabilized expansive soil, with a focus on enhancing its mechanical properties for road subgrade applications. Expansive soil, characterized by continuous swell and shrink behavior, undergoes cyclic testing to establish equilibrium and critical density. The mitigating effects of teff straw ash on soil damage and its influence on expansive soil’s mechanical attributes are investigated. Laboratory results classify natural expansive soil as A-7-5 and CH according to AASHTO and USCS standards, respectively. Using a one-dimensional odometer apparatus, six wetting–drying cycles are conducted on teff straw ash-stabilized expansive soil to observe its behavior at equilibrium. Scanning electron microscopy reveals a disordered bond between soil particles and teff straw ash, intensifying with increased wetting–drying cycles. X-ray diffraction analysis is performed on samples subjected to different curing times, indicating heightened cation exchange and pozzolanic reactions as curing duration increases, thereby reducing soil expansiveness. A 96-hr socked California Bearing Ratio (CBR) test assesses subgrade strength. The CBR values for natural soil fall below the Ethiopian Road Authority (ERA) standards for low-volume roads. In contrast, expansive soil stabilized with teff straw ash at 10%, 15%, and 20% exhibits substantial increases in CBR values (3.7, 6.7, and 8.9, respectively), meeting the ERA standards. This suggests that teff straw ash stabilization renders expansive soil suitable for low-volume road subgrades, aligning with ERA standards. This comprehensive study provides valuable insights into the potential use of teff straw ash as an effective stabilizer for expansive soils, offering sustainable solutions for road construction in regions characterized by expansive soil challenges.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.