无限范围多体浮凸自旋系统中的积分性和精确可解动力学特征

Harshit Sharma, Udaysinh T. Bhosale
{"title":"无限范围多体浮凸自旋系统中的积分性和精确可解动力学特征","authors":"Harshit Sharma, Udaysinh T. Bhosale","doi":"arxiv-2405.15797","DOIUrl":null,"url":null,"abstract":"In a recent work Sharma and Bhosale [Phys. Rev. B, 109, 014412 (2024)],\n$N$-spin Floquet model having infinite range Ising interaction was introduced.\nIn this paper, we generalized the strength of interaction to $J$, such that\n$J=1$ case reduces to the aforementioned work. We show that for $J=1/2$ the\nmodel still exhibits integrability for an even number of qubits only. We\nanalytically solve the cases of $6$, $8$, $10$, and $12$ qubits, finding its\neigensystem, dynamics of entanglement for various initial states, and the\nunitary evolution operator. These quantities exhibit the signature of quantum\nintegrability (QI). For the general case of even-$N > 12$ qubits, we\nconjuncture the presence of QI using the numerical evidences such as spectrum\ndegeneracy, and the exact periodic nature of both the entanglement dynamics and\nthe time-evolved unitary operator. We numerically show the absence of QI for\nodd $N$ by observing a violation of the signatures of QI. We analytically and\nnumerically find that the maximum value of time-evolved concurrence\n($C_{\\mbox{max}}$) decreases with $N$, indicating the multipartite nature of\nentanglement. Possible experiments to verify our results are discussed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signatures of Integrability and Exactly Solvable Dynamics in an Infinite-Range Many-Body Floquet Spin System\",\"authors\":\"Harshit Sharma, Udaysinh T. Bhosale\",\"doi\":\"arxiv-2405.15797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent work Sharma and Bhosale [Phys. Rev. B, 109, 014412 (2024)],\\n$N$-spin Floquet model having infinite range Ising interaction was introduced.\\nIn this paper, we generalized the strength of interaction to $J$, such that\\n$J=1$ case reduces to the aforementioned work. We show that for $J=1/2$ the\\nmodel still exhibits integrability for an even number of qubits only. We\\nanalytically solve the cases of $6$, $8$, $10$, and $12$ qubits, finding its\\neigensystem, dynamics of entanglement for various initial states, and the\\nunitary evolution operator. These quantities exhibit the signature of quantum\\nintegrability (QI). For the general case of even-$N > 12$ qubits, we\\nconjuncture the presence of QI using the numerical evidences such as spectrum\\ndegeneracy, and the exact periodic nature of both the entanglement dynamics and\\nthe time-evolved unitary operator. We numerically show the absence of QI for\\nodd $N$ by observing a violation of the signatures of QI. We analytically and\\nnumerically find that the maximum value of time-evolved concurrence\\n($C_{\\\\mbox{max}}$) decreases with $N$, indicating the multipartite nature of\\nentanglement. Possible experiments to verify our results are discussed.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一项工作 Sharma 和 Bhosale [Phys. Rev. B, 109, 014412 (2024)]中,介绍了具有无限范围伊辛相互作用的 $N$ 自旋 Floquet 模型。我们证明,当 $J=1/2$ 时,该模型仅在偶数比特情况下仍具有可整性。我们对 6$、8$、10$ 和 12$ 量子比特的情况进行了分析求解,找到了它的奇异系统、各种初始状态下的纠缠动态以及单元演化算子。这些量呈现出量子可控性(QI)的特征。对于偶数-$N > 12$ 量子比特的一般情况,我们利用频谱退化等数值证据,以及纠缠动力学和时间演化单位算子的精确周期性,来推断 QI 的存在。我们通过观察 QI 符号的违反,从数值上证明了在多达 $N$ 的情况下不存在 QI。我们通过分析和数值计算发现,时间演化一致性的最大值($C_{\mbox{max}}$)随$N$的增大而减小,这表明了纠缠的多方性质。讨论了验证我们结果的可能实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signatures of Integrability and Exactly Solvable Dynamics in an Infinite-Range Many-Body Floquet Spin System
In a recent work Sharma and Bhosale [Phys. Rev. B, 109, 014412 (2024)], $N$-spin Floquet model having infinite range Ising interaction was introduced. In this paper, we generalized the strength of interaction to $J$, such that $J=1$ case reduces to the aforementioned work. We show that for $J=1/2$ the model still exhibits integrability for an even number of qubits only. We analytically solve the cases of $6$, $8$, $10$, and $12$ qubits, finding its eigensystem, dynamics of entanglement for various initial states, and the unitary evolution operator. These quantities exhibit the signature of quantum integrability (QI). For the general case of even-$N > 12$ qubits, we conjuncture the presence of QI using the numerical evidences such as spectrum degeneracy, and the exact periodic nature of both the entanglement dynamics and the time-evolved unitary operator. We numerically show the absence of QI for odd $N$ by observing a violation of the signatures of QI. We analytically and numerically find that the maximum value of time-evolved concurrence ($C_{\mbox{max}}$) decreases with $N$, indicating the multipartite nature of entanglement. Possible experiments to verify our results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信