临界温度下双面球形 SK 模型的自由能波动

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Elizabeth W. Collins-Woodfin, Han Gia Le
{"title":"临界温度下双面球形 SK 模型的自由能波动","authors":"Elizabeth W. Collins-Woodfin, Han Gia Le","doi":"10.1007/s00023-024-01448-9","DOIUrl":null,"url":null,"abstract":"<p>The spherical Sherrington–Kirkpatrick (SSK) model and its bipartite analog both exhibit the phenomenon that their free energy fluctuations are asymptotically Gaussian at high temperature but asymptotically Tracy–Widom at low temperature. This was proved in two papers by Baik and Lee, for all non-critical temperatures. The case of the critical temperature was recently computed for the SSK model in two separate papers, one by Landon and the other by Johnstone, Klochkov, Onatski, Pavlyshyn. In the current paper, we derive the critical temperature result for the bipartite SSK model. In particular, we find that the free energy fluctuations exhibit a transition when the temperature is in a window of size <span>\\(n^{-1/3}\\sqrt{\\log n}\\)</span> around the critical temperature, the same window as for the SSK model. Within this transitional window, the asymptotic fluctuations of the free energy are the sum of independent Gaussian and Tracy–Widom random variables.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"65 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free Energy Fluctuations of the Bipartite Spherical SK Model at Critical Temperature\",\"authors\":\"Elizabeth W. Collins-Woodfin, Han Gia Le\",\"doi\":\"10.1007/s00023-024-01448-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spherical Sherrington–Kirkpatrick (SSK) model and its bipartite analog both exhibit the phenomenon that their free energy fluctuations are asymptotically Gaussian at high temperature but asymptotically Tracy–Widom at low temperature. This was proved in two papers by Baik and Lee, for all non-critical temperatures. The case of the critical temperature was recently computed for the SSK model in two separate papers, one by Landon and the other by Johnstone, Klochkov, Onatski, Pavlyshyn. In the current paper, we derive the critical temperature result for the bipartite SSK model. In particular, we find that the free energy fluctuations exhibit a transition when the temperature is in a window of size <span>\\\\(n^{-1/3}\\\\sqrt{\\\\log n}\\\\)</span> around the critical temperature, the same window as for the SSK model. Within this transitional window, the asymptotic fluctuations of the free energy are the sum of independent Gaussian and Tracy–Widom random variables.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01448-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01448-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

球形谢林顿-柯克帕特里克(SSK)模型及其二方类似物都表现出这样的现象:它们的自由能波动在高温下是渐近高斯的,但在低温下是渐近特雷西-维多姆的。Baik 和 Lee 在两篇论文中证明了这一点,适用于所有非临界温度。最近,Landon 和 Johnstone、Klochkov、Onatski、Pavlyshyn 分别在两篇论文中计算了 SSK 模型的临界温度。在本论文中,我们推导出了二方 SSK 模型的临界温度结果。特别是,我们发现当温度处于临界温度附近的一个大小为 \(n^{-1/3}\sqrt\{log n}\) 的窗口(与 SSK 模型的窗口相同)时,自由能波动会出现一个过渡。在这个过渡窗口内,自由能的渐近波动是独立的高斯随机变量和特雷西-维多姆随机变量之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Free Energy Fluctuations of the Bipartite Spherical SK Model at Critical Temperature

Free Energy Fluctuations of the Bipartite Spherical SK Model at Critical Temperature

The spherical Sherrington–Kirkpatrick (SSK) model and its bipartite analog both exhibit the phenomenon that their free energy fluctuations are asymptotically Gaussian at high temperature but asymptotically Tracy–Widom at low temperature. This was proved in two papers by Baik and Lee, for all non-critical temperatures. The case of the critical temperature was recently computed for the SSK model in two separate papers, one by Landon and the other by Johnstone, Klochkov, Onatski, Pavlyshyn. In the current paper, we derive the critical temperature result for the bipartite SSK model. In particular, we find that the free energy fluctuations exhibit a transition when the temperature is in a window of size \(n^{-1/3}\sqrt{\log n}\) around the critical temperature, the same window as for the SSK model. Within this transitional window, the asymptotic fluctuations of the free energy are the sum of independent Gaussian and Tracy–Widom random variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信