论同构重排不变空间类中的同构嵌入

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030017
S. V. Astashkin
{"title":"论同构重排不变空间类中的同构嵌入","authors":"S. V. Astashkin","doi":"10.1134/s0037446624030017","DOIUrl":null,"url":null,"abstract":"<p>The equivalence of the Haar system in a rearrangement\ninvariant space <span>\\( X \\)</span> on <span>\\( [0,1] \\)</span> and a sequence of pairwise disjoint functions\nin some Lorentz space is known to imply that <span>\\( X=L_{2}[0,1] \\)</span> up to the equivalence of\nnorms. We show that the same holds for the class of uniform\ndisjointly homogeneous rearrangement invariant spaces and obtain a few\nconsequences for the properties of isomorphic embeddings of such spaces.\nIn particular, the <span>\\( L_{p}[0,1] \\)</span> space with <span>\\( 1&lt;p&lt;\\infty \\)</span> is the\nonly uniform <span>\\( p \\)</span>-disjointly homogeneous rearrangement invariant space on <span>\\( [0,1] \\)</span>\nwith nontrivial Boyd indices which has two rearrangement invariant representations\non the half-axis <span>\\( (0,\\infty) \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Isomorphic Embeddings in the Class of Disjointly Homogeneous Rearrangement Invariant Spaces\",\"authors\":\"S. V. Astashkin\",\"doi\":\"10.1134/s0037446624030017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The equivalence of the Haar system in a rearrangement\\ninvariant space <span>\\\\( X \\\\)</span> on <span>\\\\( [0,1] \\\\)</span> and a sequence of pairwise disjoint functions\\nin some Lorentz space is known to imply that <span>\\\\( X=L_{2}[0,1] \\\\)</span> up to the equivalence of\\nnorms. We show that the same holds for the class of uniform\\ndisjointly homogeneous rearrangement invariant spaces and obtain a few\\nconsequences for the properties of isomorphic embeddings of such spaces.\\nIn particular, the <span>\\\\( L_{p}[0,1] \\\\)</span> space with <span>\\\\( 1&lt;p&lt;\\\\infty \\\\)</span> is the\\nonly uniform <span>\\\\( p \\\\)</span>-disjointly homogeneous rearrangement invariant space on <span>\\\\( [0,1] \\\\)</span>\\nwith nontrivial Boyd indices which has two rearrangement invariant representations\\non the half-axis <span>\\\\( (0,\\\\infty) \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,重排不变空间 \( X \) 中关于 \( [0,1] \)的哈氏系统与某个洛伦兹空间中的成对不相交函数序列的等价性意味着 \( X=L_{2}[0,1] \)直到对数的等价性。我们证明了这一点同样适用于一类均匀互不相等的重排不变空间,并得到了关于这类空间同构嵌入性质的一些结论。特别是,具有 \( 1<p<\infty \)的 \( L_{p}[0,1] \)空间是 \( [0,1] \)上唯一的均匀 \( p \)-异次同构重排不变空间,它具有非难博伊德指数,在半轴 \( (0,\infty) \)上有两个重排不变表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Isomorphic Embeddings in the Class of Disjointly Homogeneous Rearrangement Invariant Spaces

The equivalence of the Haar system in a rearrangement invariant space \( X \) on \( [0,1] \) and a sequence of pairwise disjoint functions in some Lorentz space is known to imply that \( X=L_{2}[0,1] \) up to the equivalence of norms. We show that the same holds for the class of uniform disjointly homogeneous rearrangement invariant spaces and obtain a few consequences for the properties of isomorphic embeddings of such spaces. In particular, the \( L_{p}[0,1] \) space with \( 1<p<\infty \) is the only uniform \( p \)-disjointly homogeneous rearrangement invariant space on \( [0,1] \) with nontrivial Boyd indices which has two rearrangement invariant representations on the half-axis \( (0,\infty) \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信