{"title":"与无 k 数相关的 Hecke-Maass 形式的傅立叶系数的平均行为","authors":"Guodong Hua","doi":"10.1007/s11139-024-00876-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>f</i> and <i>g</i> be two distinct normalized primitive Hecke–Maass cusp forms of weight zero with Laplacian eigenvalues <span>\\(\\frac{1}{4}+u^{2}\\)</span> and <span>\\(\\frac{1}{4}+v^{2}\\)</span> for the full modular group <span>\\(\\Gamma =SL(2,\\mathbb {Z})\\)</span>, respectively. Denote by <span>\\(\\lambda _{f}(n)\\)</span> and <span>\\(\\lambda _{g}(n)\\)</span> the <i>n</i>th normalized Fourier coefficients of <i>f</i> and <i>g</i>, respectively. In this paper, we investigate the non-trivial upper bounds for the sum <span>\\(\\sum _{n\\in S}|\\lambda _{f}(n)\\lambda _{g}(n)|\\)</span>, where <i>S</i> is a suitable subset of <span>\\(\\mathbb {Z}^{+}\\cap [1,x]\\)</span> with certain properties.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The average behaviour of Fourier coefficients of the Hecke–Maass form associated to k-free numbers\",\"authors\":\"Guodong Hua\",\"doi\":\"10.1007/s11139-024-00876-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>f</i> and <i>g</i> be two distinct normalized primitive Hecke–Maass cusp forms of weight zero with Laplacian eigenvalues <span>\\\\(\\\\frac{1}{4}+u^{2}\\\\)</span> and <span>\\\\(\\\\frac{1}{4}+v^{2}\\\\)</span> for the full modular group <span>\\\\(\\\\Gamma =SL(2,\\\\mathbb {Z})\\\\)</span>, respectively. Denote by <span>\\\\(\\\\lambda _{f}(n)\\\\)</span> and <span>\\\\(\\\\lambda _{g}(n)\\\\)</span> the <i>n</i>th normalized Fourier coefficients of <i>f</i> and <i>g</i>, respectively. In this paper, we investigate the non-trivial upper bounds for the sum <span>\\\\(\\\\sum _{n\\\\in S}|\\\\lambda _{f}(n)\\\\lambda _{g}(n)|\\\\)</span>, where <i>S</i> is a suitable subset of <span>\\\\(\\\\mathbb {Z}^{+}\\\\cap [1,x]\\\\)</span> with certain properties.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00876-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00876-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 f 和 g 分别是权重为零的两个不同的归一化原始 Hecke-Maass cusp 形式,对于全模态群 \(\Gamma =SL(2,\mathbb {Z})\) 具有拉普拉奇特征值(\frac{1}{4}+u^{2})和(\frac{1}{4}+v^{2})。分别用 \(\lambda _{f}(n)\) 和 \(\lambda _{g}(n)\) 表示 f 和 g 的 n 次归一化傅里叶系数。在本文中,我们研究了和\(\sum _{n\in S}|\lambda _{f}(n)\lambda _{g}(n)|\) 的非难上限,其中 S 是具有某些性质的 \(\mathbb {Z}^{+}\cap [1,x]\) 的合适子集。
The average behaviour of Fourier coefficients of the Hecke–Maass form associated to k-free numbers
Let f and g be two distinct normalized primitive Hecke–Maass cusp forms of weight zero with Laplacian eigenvalues \(\frac{1}{4}+u^{2}\) and \(\frac{1}{4}+v^{2}\) for the full modular group \(\Gamma =SL(2,\mathbb {Z})\), respectively. Denote by \(\lambda _{f}(n)\) and \(\lambda _{g}(n)\) the nth normalized Fourier coefficients of f and g, respectively. In this paper, we investigate the non-trivial upper bounds for the sum \(\sum _{n\in S}|\lambda _{f}(n)\lambda _{g}(n)|\), where S is a suitable subset of \(\mathbb {Z}^{+}\cap [1,x]\) with certain properties.