多群体仓本坂口振荡器的转移性

Bojun Li, Nariya Uchida
{"title":"多群体仓本坂口振荡器的转移性","authors":"Bojun Li, Nariya Uchida","doi":"arxiv-2405.15396","DOIUrl":null,"url":null,"abstract":"An Ott-Antonsen reduced $M$-population of Kuramoto-Sakaguchi oscillators is\ninvestigated, focusing on the influence of the phase-lag parameter $\\alpha$ on\nthe collective dynamics. For oscillator populations coupled on a ring, we\nobtained a wide variety of spatiotemporal patterns, including coherent states,\ntraveling waves, partially synchronized states, modulated states, and\nincoherent states. Back-and-forth transitions between these states are found,\nwhich suggest metastability. Linear stability analysis reveals the stable\nregions of coherent states with different winding numbers $q$. Within certain\n$\\alpha$ ranges, the system settles into stable traveling wave solutions\ndespite the coherent states also being linearly stable. For around $\\alpha\n\\approx 0.46\\pi$, the system displays the most frequent metastable transitions\nbetween coherent states and partially synchronized states, while for $\\alpha$\ncloser to $\\pi/2$, metastable transitions arise between partially synchronized\nstates and modulated states. This model captures metastable dynamics akin to\nbrain activity, offering insights into the synchronization of brain networks.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastability of multi-population Kuramoto-Sakaguchi oscillators\",\"authors\":\"Bojun Li, Nariya Uchida\",\"doi\":\"arxiv-2405.15396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Ott-Antonsen reduced $M$-population of Kuramoto-Sakaguchi oscillators is\\ninvestigated, focusing on the influence of the phase-lag parameter $\\\\alpha$ on\\nthe collective dynamics. For oscillator populations coupled on a ring, we\\nobtained a wide variety of spatiotemporal patterns, including coherent states,\\ntraveling waves, partially synchronized states, modulated states, and\\nincoherent states. Back-and-forth transitions between these states are found,\\nwhich suggest metastability. Linear stability analysis reveals the stable\\nregions of coherent states with different winding numbers $q$. Within certain\\n$\\\\alpha$ ranges, the system settles into stable traveling wave solutions\\ndespite the coherent states also being linearly stable. For around $\\\\alpha\\n\\\\approx 0.46\\\\pi$, the system displays the most frequent metastable transitions\\nbetween coherent states and partially synchronized states, while for $\\\\alpha$\\ncloser to $\\\\pi/2$, metastable transitions arise between partially synchronized\\nstates and modulated states. This model captures metastable dynamics akin to\\nbrain activity, offering insights into the synchronization of brain networks.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了仓本-坂口振荡器的奥特-安东森缩小 $M$ 群体,重点是相位滞后参数 $\alpha$ 对集体动力学的影响。对于耦合在环上的振荡器群,我们获得了各种各样的时空模式,包括相干态、行波、部分同步态、调制态和非相干态。我们还发现了这些状态之间的来回转换,这表明了它们的可转移性。线性稳定性分析揭示了不同绕组数 $q$ 相干态的稳定区域。在一定的$\alpha$范围内,尽管相干态也是线性稳定的,但系统会进入稳定的行波解。在大约 $\alpha\approx 0.46\pi$ 的范围内,系统在相干态和部分同步态之间表现出最频繁的可转移性,而当 $\alpha$ 接近 $\pi/2$ 时,可转移性会出现在部分同步态和调制态之间。这个模型捕捉到了类似大脑活动的可变动态,为研究大脑网络的同步化提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metastability of multi-population Kuramoto-Sakaguchi oscillators
An Ott-Antonsen reduced $M$-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter $\alpha$ on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability. Linear stability analysis reveals the stable regions of coherent states with different winding numbers $q$. Within certain $\alpha$ ranges, the system settles into stable traveling wave solutions despite the coherent states also being linearly stable. For around $\alpha \approx 0.46\pi$, the system displays the most frequent metastable transitions between coherent states and partially synchronized states, while for $\alpha$ closer to $\pi/2$, metastable transitions arise between partially synchronized states and modulated states. This model captures metastable dynamics akin to brain activity, offering insights into the synchronization of brain networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信