2 cA1点的n2-不等式及其在双刚性中的应用

IF 1.3 1区 数学 Q1 MATHEMATICS
Igor Krylov, Takuzo Okada, Erik Paemurru, Jihun Park
{"title":"2 cA1点的n2-不等式及其在双刚性中的应用","authors":"Igor Krylov, Takuzo Okada, Erik Paemurru, Jihun Park","doi":"10.1112/s0010437x24007164","DOIUrl":null,"url":null,"abstract":"<p>The <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$4 n^2$</span></span></img></span></span>-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$cA_1$</span></span></img></span></span>, and obtain a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$2 n^2$</span></span></img></span></span>-inequality for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$cA_1$</span></span></img></span></span> points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span> over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {P}^1$</span></span></img></span></span> satisfying the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$K^2$</span></span></img></span></span>-condition, all of which have at most terminal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$cA_1$</span></span></img></span></span> singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$cA_1$</span></span></img></span></span> point which is not an ordinary double point.</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2 n2-inequality for cA1 points and applications to birational rigidity\",\"authors\":\"Igor Krylov, Takuzo Okada, Erik Paemurru, Jihun Park\",\"doi\":\"10.1112/s0010437x24007164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$4 n^2$</span></span></img></span></span>-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$cA_1$</span></span></img></span></span>, and obtain a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2 n^2$</span></span></img></span></span>-inequality for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$cA_1$</span></span></img></span></span> points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1$</span></span></img></span></span> over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {P}^1$</span></span></img></span></span> satisfying the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K^2$</span></span></img></span></span>-condition, all of which have at most terminal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$cA_1$</span></span></img></span></span> singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240528083622301-0572:S0010437X24007164:S0010437X24007164_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$cA_1$</span></span></img></span></span> point which is not an ordinary double point.</p>\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/s0010437x24007164\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007164","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

光滑点的 $4 n^2$ 不等式在双(超)刚性证明中起着重要作用。本文的主要目的是将这种不等式推广到 $cA_1$ 类型的末端奇异点,并获得 $cA_1$ 点的 $2 n^2$ 不等式。作为应用,我们证明了六元双实体、许多其他素数法诺 3 折叠加权完全交集以及满足 $K^2$ 条件的 $\mathbb {P}^1$ 上 1$ 度的 del Pezzo 纤 维的双向(超)刚性,所有这些都最多有末端的 $cA_1$ 奇点和末端的商奇点。这些给出了双向(超)刚性法诺 3 折叠和德尔佩佐纤维的第一个例子,其中的 $cA_1$ 点不是普通的双点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2 n2-inequality for cA1 points and applications to birational rigidity

The $4 n^2$-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type $cA_1$, and obtain a $2 n^2$-inequality for $cA_1$ points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree $1$ over $\mathbb {P}^1$ satisfying the $K^2$-condition, all of which have at most terminal $cA_1$ singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a $cA_1$ point which is not an ordinary double point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信