论特征 $ p $ 的有限维简单诺维科夫代数

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030169
V. N. Zhelyabin, A. S. Zakharov
{"title":"论特征 $ p $ 的有限维简单诺维科夫代数","authors":"V. N. Zhelyabin, A. S. Zakharov","doi":"10.1134/s0037446624030169","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\( N \\)</span> be a nonassociative finite-dimensional simple Novikov\nalgebra over an algebraically closed field <span>\\( F \\)</span> of characteristic <span>\\( p&gt;0 \\)</span>. Then\nthe right multiplication algebra <span>\\( R \\)</span>\nis a differential simple algebra\nwith respect to some derivation <span>\\( d \\)</span>. The algebra <span>\\( N \\)</span> is isomorphic\nto a Novikov algebra <span>\\( (R,d,R_{x}) \\)</span>\nfor some operator of right multiplication by <span>\\( x \\)</span> and multiplication\nis given by <span>\\( u\\circ w=ud(w)+R_{x}uw \\)</span>.\nMoreover, the algebra <span>\\( R \\)</span> is a truncated polynomial algebra.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Finite-Dimensional Simple Novikov Algebras of Characteristic  $ p $\",\"authors\":\"V. N. Zhelyabin, A. S. Zakharov\",\"doi\":\"10.1134/s0037446624030169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\( N \\\\)</span> be a nonassociative finite-dimensional simple Novikov\\nalgebra over an algebraically closed field <span>\\\\( F \\\\)</span> of characteristic <span>\\\\( p&gt;0 \\\\)</span>. Then\\nthe right multiplication algebra <span>\\\\( R \\\\)</span>\\nis a differential simple algebra\\nwith respect to some derivation <span>\\\\( d \\\\)</span>. The algebra <span>\\\\( N \\\\)</span> is isomorphic\\nto a Novikov algebra <span>\\\\( (R,d,R_{x}) \\\\)</span>\\nfor some operator of right multiplication by <span>\\\\( x \\\\)</span> and multiplication\\nis given by <span>\\\\( u\\\\circ w=ud(w)+R_{x}uw \\\\)</span>.\\nMoreover, the algebra <span>\\\\( R \\\\)</span> is a truncated polynomial algebra.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让\( N\) 是特征\(p>0\)的代数闭域\( F\) 上的非联合有限维简单诺维克代数。那么右乘法代数(R)是一个关于某个导数(d)的微分简单代数。对于某个右乘法算子(x)来说,代数(N)与诺维科夫代数((R,d,R_{x}))是同构的,而乘法由(u/circ w=ud(w)+R_{x}uw )给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Finite-Dimensional Simple Novikov Algebras of Characteristic  $ p $

Let \( N \) be a nonassociative finite-dimensional simple Novikov algebra over an algebraically closed field \( F \) of characteristic \( p>0 \). Then the right multiplication algebra \( R \) is a differential simple algebra with respect to some derivation \( d \). The algebra \( N \) is isomorphic to a Novikov algebra \( (R,d,R_{x}) \) for some operator of right multiplication by \( x \) and multiplication is given by \( u\circ w=ud(w)+R_{x}uw \). Moreover, the algebra \( R \) is a truncated polynomial algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信