具有自诱导拓扑非互惠性的孤子

Pedro Fittipaldi de Castro, Wladimir Alejandro Benalcazar
{"title":"具有自诱导拓扑非互惠性的孤子","authors":"Pedro Fittipaldi de Castro, Wladimir Alejandro Benalcazar","doi":"arxiv-2405.14919","DOIUrl":null,"url":null,"abstract":"The nonlinear Schrodinger equation can support solitons, self-interacting\nstates that remain sharply localized and behave as nearly independent objects.\nHere, we demonstrate the existence of solitons with self-induced nonreciprocal\ndynamics in a discrete version of the nonlinear Schrodinger equation. This\nnonreciprocal behavior depends on the soliton's power, indicating an interplay\nbetween linear and nonlinear terms in the Hamiltonian. Starting from static\nstable solitons at high power, the nonreciprocal behavior manifests as the\npower is lowered first by the appearance of nonreciprocal linear instabilities\non static solitons and then by a full self-induced nonreciprocal regime, in\nwhich the solitons propagate with unidirectional acceleration and\namplification. We show this behavior to be topologically protected by winding\nnumbers on the solitons' mean-field Hamiltonian and their linear stability\nmatrix, revealing an intimate connection between nonlinear, nonreciprocal\ndynamics and point gap topology in non-Hermitian linear Hamiltonians.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitons with Self-induced Topological Nonreciprocity\",\"authors\":\"Pedro Fittipaldi de Castro, Wladimir Alejandro Benalcazar\",\"doi\":\"arxiv-2405.14919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinear Schrodinger equation can support solitons, self-interacting\\nstates that remain sharply localized and behave as nearly independent objects.\\nHere, we demonstrate the existence of solitons with self-induced nonreciprocal\\ndynamics in a discrete version of the nonlinear Schrodinger equation. This\\nnonreciprocal behavior depends on the soliton's power, indicating an interplay\\nbetween linear and nonlinear terms in the Hamiltonian. Starting from static\\nstable solitons at high power, the nonreciprocal behavior manifests as the\\npower is lowered first by the appearance of nonreciprocal linear instabilities\\non static solitons and then by a full self-induced nonreciprocal regime, in\\nwhich the solitons propagate with unidirectional acceleration and\\namplification. We show this behavior to be topologically protected by winding\\nnumbers on the solitons' mean-field Hamiltonian and their linear stability\\nmatrix, revealing an intimate connection between nonlinear, nonreciprocal\\ndynamics and point gap topology in non-Hermitian linear Hamiltonians.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性薛定谔方程可以支持孤子,孤子是一种自相互作用的状态,它保持着锐利的局部性,并表现为近乎独立的物体。在这里,我们证明了在非线性薛定谔方程的离散版本中,存在着具有自诱导非互惠动力学的孤子。这种非互惠行为取决于孤子的功率,表明了哈密顿中线性和非线性项之间的相互作用。从高功率下的静态稳定孤子开始,非互惠行为随着功率的降低而表现出来,首先是静态孤子出现非互惠的线性不稳定性,然后是完全的自诱导非互惠机制,在该机制中,孤子以单向加速和放大的方式传播。我们证明这种行为在拓扑学上受到孤子均场哈密顿及其线性稳定矩阵上的绕数保护,揭示了非线性、非互惠动力学与非赫米蒂线性哈密顿中的点隙拓扑学之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solitons with Self-induced Topological Nonreciprocity
The nonlinear Schrodinger equation can support solitons, self-interacting states that remain sharply localized and behave as nearly independent objects. Here, we demonstrate the existence of solitons with self-induced nonreciprocal dynamics in a discrete version of the nonlinear Schrodinger equation. This nonreciprocal behavior depends on the soliton's power, indicating an interplay between linear and nonlinear terms in the Hamiltonian. Starting from static stable solitons at high power, the nonreciprocal behavior manifests as the power is lowered first by the appearance of nonreciprocal linear instabilities on static solitons and then by a full self-induced nonreciprocal regime, in which the solitons propagate with unidirectional acceleration and amplification. We show this behavior to be topologically protected by winding numbers on the solitons' mean-field Hamiltonian and their linear stability matrix, revealing an intimate connection between nonlinear, nonreciprocal dynamics and point gap topology in non-Hermitian linear Hamiltonians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信