{"title":"论 $ \\operatorname{Lim}(N) $ 中的正则子群","authors":"N. M. Suchkov, A. A. Shlepkin","doi":"10.1134/s0037446624030121","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\( G \\)</span> be the group of all limited permutations of the set of naturals.\nWe prove that every countable locally finite group is isomorphic to some regular\nsubgroup of <span>\\( G \\)</span>. Also, if a regular subgroup <span>\\( H \\)</span> of <span>\\( G \\)</span> contains an element\nof infinite order then <span>\\( H \\)</span> has a normal infinite cyclic subgroup of finite index.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Regular Subgroups in $ \\\\operatorname{Lim}(N) $\",\"authors\":\"N. M. Suchkov, A. A. Shlepkin\",\"doi\":\"10.1134/s0037446624030121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\( G \\\\)</span> be the group of all limited permutations of the set of naturals.\\nWe prove that every countable locally finite group is isomorphic to some regular\\nsubgroup of <span>\\\\( G \\\\)</span>. Also, if a regular subgroup <span>\\\\( H \\\\)</span> of <span>\\\\( G \\\\)</span> contains an element\\nof infinite order then <span>\\\\( H \\\\)</span> has a normal infinite cyclic subgroup of finite index.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明每个可数局部有限群都与\( G\) 的某个正则子群同构。同时,如果 G 的正则子群 H 包含一个无限阶元素,那么 H 有一个有限索引的正则无限循环子群。
Let \( G \) be the group of all limited permutations of the set of naturals.
We prove that every countable locally finite group is isomorphic to some regular
subgroup of \( G \). Also, if a regular subgroup \( H \) of \( G \) contains an element
of infinite order then \( H \) has a normal infinite cyclic subgroup of finite index.