{"title":"海森堡群上非均质微分算子的强制估计","authors":"D. V. Isangulova","doi":"10.1134/s0037446624030157","DOIUrl":null,"url":null,"abstract":"<p>We construct some linear nonhomogeneous differential operator <span>\\( \\mathcal{Q} \\)</span> on the Heisenberg group\nwhose kernel is interconnected with the Lie algebra of the group of conformal mappings.\nIn more detail, the kernel of <span>\\( \\mathcal{Q} \\)</span> coincides with first two coordinate functions of mappings of\nthe Lie algebra of conformal mappings.\nWe derive the integral representation formula and\ngive a coercive estimate for <span>\\( \\mathcal{Q} \\)</span>.</p>","PeriodicalId":49533,"journal":{"name":"Siberian Mathematical Journal","volume":"22 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coercive Estimate for the Nonhomogeneous Differential Operator on the Heisenberg Group\",\"authors\":\"D. V. Isangulova\",\"doi\":\"10.1134/s0037446624030157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct some linear nonhomogeneous differential operator <span>\\\\( \\\\mathcal{Q} \\\\)</span> on the Heisenberg group\\nwhose kernel is interconnected with the Lie algebra of the group of conformal mappings.\\nIn more detail, the kernel of <span>\\\\( \\\\mathcal{Q} \\\\)</span> coincides with first two coordinate functions of mappings of\\nthe Lie algebra of conformal mappings.\\nWe derive the integral representation formula and\\ngive a coercive estimate for <span>\\\\( \\\\mathcal{Q} \\\\)</span>.</p>\",\"PeriodicalId\":49533,\"journal\":{\"name\":\"Siberian Mathematical Journal\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030157\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030157","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Coercive Estimate for the Nonhomogeneous Differential Operator on the Heisenberg Group
We construct some linear nonhomogeneous differential operator \( \mathcal{Q} \) on the Heisenberg group
whose kernel is interconnected with the Lie algebra of the group of conformal mappings.
In more detail, the kernel of \( \mathcal{Q} \) coincides with first two coordinate functions of mappings of
the Lie algebra of conformal mappings.
We derive the integral representation formula and
give a coercive estimate for \( \mathcal{Q} \).
期刊介绍:
Siberian Mathematical Journal is journal published in collaboration with the Sobolev Institute of Mathematics in Novosibirsk. The journal publishes the results of studies in various branches of mathematics.