海森堡群上非均质微分算子的强制估计

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030157
D. V. Isangulova
{"title":"海森堡群上非均质微分算子的强制估计","authors":"D. V. Isangulova","doi":"10.1134/s0037446624030157","DOIUrl":null,"url":null,"abstract":"<p>We construct some linear nonhomogeneous differential operator <span>\\( \\mathcal{Q} \\)</span> on the Heisenberg group\nwhose kernel is interconnected with the Lie algebra of the group of conformal mappings.\nIn more detail, the kernel of <span>\\( \\mathcal{Q} \\)</span> coincides with first two coordinate functions of mappings of\nthe Lie algebra of conformal mappings.\nWe derive the integral representation formula and\ngive a coercive estimate for <span>\\( \\mathcal{Q} \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Coercive Estimate for the Nonhomogeneous Differential Operator on the Heisenberg Group\",\"authors\":\"D. V. Isangulova\",\"doi\":\"10.1134/s0037446624030157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct some linear nonhomogeneous differential operator <span>\\\\( \\\\mathcal{Q} \\\\)</span> on the Heisenberg group\\nwhose kernel is interconnected with the Lie algebra of the group of conformal mappings.\\nIn more detail, the kernel of <span>\\\\( \\\\mathcal{Q} \\\\)</span> coincides with first two coordinate functions of mappings of\\nthe Lie algebra of conformal mappings.\\nWe derive the integral representation formula and\\ngive a coercive estimate for <span>\\\\( \\\\mathcal{Q} \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了海森堡群上的线性非均质微分算子\( \mathcal{Q} \),它的核与共形映射群的李代数相互关联。更详细地说,\( \mathcal{Q} \)的核与共形映射的李代数的映射的前两个坐标函数重合。我们推导出了\( \mathcal{Q} \)的积分表示公式并给出了\( \mathcal{Q} \)的强制估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Coercive Estimate for the Nonhomogeneous Differential Operator on the Heisenberg Group

We construct some linear nonhomogeneous differential operator \( \mathcal{Q} \) on the Heisenberg group whose kernel is interconnected with the Lie algebra of the group of conformal mappings. In more detail, the kernel of \( \mathcal{Q} \) coincides with first two coordinate functions of mappings of the Lie algebra of conformal mappings. We derive the integral representation formula and give a coercive estimate for \( \mathcal{Q} \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信