{"title":"论最大关联系统的量化维度","authors":"A. A. Ivanov","doi":"10.1134/s0037446624030066","DOIUrl":null,"url":null,"abstract":"<p>We prove that for a compact metric space <span>\\( X \\)</span> and for a nonnegative real <span>\\( b \\)</span>\nnot exceeding the lower box dimension of <span>\\( X \\)</span>, there exists a maximal linked\nsystem in <span>\\( \\lambda X \\)</span> with lower quantization dimension <span>\\( b \\)</span> and support <span>\\( X \\)</span>.\nThere also exists a maximal linked system in <span>\\( \\lambda X \\)</span> with support <span>\\( X \\)</span> whose lower\nand upper quantization dimensions coincide respectively\nwith the lower and upper box dimensions of <span>\\( X \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Quantization Dimension of Maximal Linked Systems\",\"authors\":\"A. A. Ivanov\",\"doi\":\"10.1134/s0037446624030066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for a compact metric space <span>\\\\( X \\\\)</span> and for a nonnegative real <span>\\\\( b \\\\)</span>\\nnot exceeding the lower box dimension of <span>\\\\( X \\\\)</span>, there exists a maximal linked\\nsystem in <span>\\\\( \\\\lambda X \\\\)</span> with lower quantization dimension <span>\\\\( b \\\\)</span> and support <span>\\\\( X \\\\)</span>.\\nThere also exists a maximal linked system in <span>\\\\( \\\\lambda X \\\\)</span> with support <span>\\\\( X \\\\)</span> whose lower\\nand upper quantization dimensions coincide respectively\\nwith the lower and upper box dimensions of <span>\\\\( X \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于一个紧凑的度量空间(X)和一个不超过(X)的下盒维的非负实数(b),在(X)中存在一个最大的链接系统,其下量化维度(b)和支持(X)。在( \lambda X \)中也存在一个最大的链接系统,它的下量化维度和上量化维度分别与( X \)的下盒维度和上盒维度重合。
On the Quantization Dimension of Maximal Linked Systems
We prove that for a compact metric space \( X \) and for a nonnegative real \( b \)
not exceeding the lower box dimension of \( X \), there exists a maximal linked
system in \( \lambda X \) with lower quantization dimension \( b \) and support \( X \).
There also exists a maximal linked system in \( \lambda X \) with support \( X \) whose lower
and upper quantization dimensions coincide respectively
with the lower and upper box dimensions of \( X \).