论时间周期非线性网格中广义呼吸器和过渡前沿的存在性

Christopher Chong, Dmitry E. Pelinovsky, Guido Schneider
{"title":"论时间周期非线性网格中广义呼吸器和过渡前沿的存在性","authors":"Christopher Chong, Dmitry E. Pelinovsky, Guido Schneider","doi":"arxiv-2405.15621","DOIUrl":null,"url":null,"abstract":"We prove the existence of a class of time-localized and space-periodic\nbreathers (called q-gap breathers) in nonlinear lattices with time-periodic\ncoefficients. These q-gap breathers are the counterparts to the classical\nspace-localized and time-periodic breathers found in space-periodic systems.\nUsing normal form transformations, we establish rigorously the existence of\nsuch solutions with oscillating tails (in the time domain) that can be made\narbitrarily small, but finite. Due to the presence of the oscillating tails,\nthese solutions are coined generalized q-gap breathers. Using a multiple-scale\nanalysis, we also derive a tractable amplitude equation that describes the\ndynamics of breathers in the limit of small amplitude. In the presence of\ndamping, we demonstrate the existence of transition fronts that connect the\ntrivial state to the time-periodic ones. The analytical results are\ncorroborated by systematic numerical simulations.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence of Generalized Breathers and Transition Fronts in Time-Periodic Nonlinear Lattices\",\"authors\":\"Christopher Chong, Dmitry E. Pelinovsky, Guido Schneider\",\"doi\":\"arxiv-2405.15621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of a class of time-localized and space-periodic\\nbreathers (called q-gap breathers) in nonlinear lattices with time-periodic\\ncoefficients. These q-gap breathers are the counterparts to the classical\\nspace-localized and time-periodic breathers found in space-periodic systems.\\nUsing normal form transformations, we establish rigorously the existence of\\nsuch solutions with oscillating tails (in the time domain) that can be made\\narbitrarily small, but finite. Due to the presence of the oscillating tails,\\nthese solutions are coined generalized q-gap breathers. Using a multiple-scale\\nanalysis, we also derive a tractable amplitude equation that describes the\\ndynamics of breathers in the limit of small amplitude. In the presence of\\ndamping, we demonstrate the existence of transition fronts that connect the\\ntrivial state to the time-periodic ones. The analytical results are\\ncorroborated by systematic numerical simulations.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在具有时间周期性系数的非线性晶格中存在一类时间局部化和空间周期性呼吸器(称为q-间隙呼吸器)。利用正态变换,我们严格地确定了这类具有振荡尾部(在时域)的解的存在性,这种尾部可以任意地变得很小,但却是有限的。由于振荡尾部的存在,这些解被称为广义 q 隙呼吸器。通过多尺度分析,我们还推导出了一个描述小振幅极限下呼吸器动力学的可控振幅方程。在存在阻尼的情况下,我们证明了连接三维状态和时间周期状态的过渡前沿的存在。分析结果得到了系统数值模拟的证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence of Generalized Breathers and Transition Fronts in Time-Periodic Nonlinear Lattices
We prove the existence of a class of time-localized and space-periodic breathers (called q-gap breathers) in nonlinear lattices with time-periodic coefficients. These q-gap breathers are the counterparts to the classical space-localized and time-periodic breathers found in space-periodic systems. Using normal form transformations, we establish rigorously the existence of such solutions with oscillating tails (in the time domain) that can be made arbitrarily small, but finite. Due to the presence of the oscillating tails, these solutions are coined generalized q-gap breathers. Using a multiple-scale analysis, we also derive a tractable amplitude equation that describes the dynamics of breathers in the limit of small amplitude. In the presence of damping, we demonstrate the existence of transition fronts that connect the trivial state to the time-periodic ones. The analytical results are corroborated by systematic numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信