阿尔丁关于封闭编织物等位性定理的一般化I

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030078
A. V. Malyutin
{"title":"阿尔丁关于封闭编织物等位性定理的一般化I","authors":"A. V. Malyutin","doi":"10.1134/s0037446624030078","DOIUrl":null,"url":null,"abstract":"<p>A classical theorem of braid theory, dating back to Artin’s work,\nsays that\ntwo closed braids in a solid torus are ambient isotopic\nif and only if\nthey represent the same conjugacy class of the braid group.\nThis theorem can be reformulated\nin the framework of link theory\nwithout referring to the group structure.\nA link in a surface bundle over the circle is transversal\nwhenever it covers the circle.\nIn this terminology,\nArtin’s theorem states that\nin a solid torus trivially fibered over the circle\ntransversal links are ambient isotopic\nif and only if\nthey are isotopic in the class of transversal links.\nWe generalize this result by proving that\n(in the piecewise linear category)\ntransversal links in an arbitrary compact orientable <span>\\( 3 \\)</span>-manifold\nfibered over the circle with a compact fiber\nare ambient isotopic\nif and only if\nthey are isotopic in the class of transversal links.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of Artin’s Theorem on the Isotopy of Closed Braids. I\",\"authors\":\"A. V. Malyutin\",\"doi\":\"10.1134/s0037446624030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A classical theorem of braid theory, dating back to Artin’s work,\\nsays that\\ntwo closed braids in a solid torus are ambient isotopic\\nif and only if\\nthey represent the same conjugacy class of the braid group.\\nThis theorem can be reformulated\\nin the framework of link theory\\nwithout referring to the group structure.\\nA link in a surface bundle over the circle is transversal\\nwhenever it covers the circle.\\nIn this terminology,\\nArtin’s theorem states that\\nin a solid torus trivially fibered over the circle\\ntransversal links are ambient isotopic\\nif and only if\\nthey are isotopic in the class of transversal links.\\nWe generalize this result by proving that\\n(in the piecewise linear category)\\ntransversal links in an arbitrary compact orientable <span>\\\\( 3 \\\\)</span>-manifold\\nfibered over the circle with a compact fiber\\nare ambient isotopic\\nif and only if\\nthey are isotopic in the class of transversal links.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

辫状线理论的一个经典定理可以追溯到阿尔丁的研究,即在实心环面中的两个闭合辫状线如果且仅当它们代表辫状线群的同一个共轭类时,它们是环境同位的。在这个术语中,阿汀定理指出,在琐细地纤化在圆上的实心环中,如果并且只有当它们在横向联系类中是同位的时候,横向联系才是环境同位的。我们通过证明(在片线性范畴中)在任意紧凑的可定向(3 \)-manifoldfibered上具有紧凑纤维的圆中的横向链接是环境同位的,当且仅当它们在横向链接类中是同位的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalization of Artin’s Theorem on the Isotopy of Closed Braids. I

A classical theorem of braid theory, dating back to Artin’s work, says that two closed braids in a solid torus are ambient isotopic if and only if they represent the same conjugacy class of the braid group. This theorem can be reformulated in the framework of link theory without referring to the group structure. A link in a surface bundle over the circle is transversal whenever it covers the circle. In this terminology, Artin’s theorem states that in a solid torus trivially fibered over the circle transversal links are ambient isotopic if and only if they are isotopic in the class of transversal links. We generalize this result by proving that (in the piecewise linear category) transversal links in an arbitrary compact orientable \( 3 \)-manifold fibered over the circle with a compact fiber are ambient isotopic if and only if they are isotopic in the class of transversal links.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信