利维特路径代数的准巴儿 * * -环特性化

Pub Date : 2024-05-29 DOI:10.1134/s0037446624030145
M. Ahmadi, A. Moussavi
{"title":"利维特路径代数的准巴儿 * * -环特性化","authors":"M. Ahmadi, A. Moussavi","doi":"10.1134/s0037446624030145","DOIUrl":null,"url":null,"abstract":"<p>We say that a graded ring (<span>\\( * \\)</span>-ring) <span>\\( R \\)</span> is a graded quasi-Baer ring (graded quasi-Baer <span>\\( * \\)</span>-ring)\nif, for each graded ideal <span>\\( I \\)</span> of <span>\\( R \\)</span>, the right annihilator of <span>\\( I \\)</span> is generated by a homogeneous idempotent (projection).\nWe prove that a Leavitt path\nalgebra is quasi-Baer (quasi-Baer <span>\\( * \\)</span>) if and only if it is graded quasi-Baer (graded quasi-Baer <span>\\( * \\)</span>).\nWe show that a Leavitt path algebra is quasi-Baer (quasi-Baer <span>\\( * \\)</span>) if its zero component is quasi-Baer (quasi-Baer <span>\\( * \\)</span>).\nHowever, we give some example that showing that the converse implication fails.\nFinally, we characterize the Leavitt path algebras that are quasi-Baer <span>\\( * \\)</span>-rings\nin terms of the properties of the underlying graph.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Baer $ * $ -Ring Characterization of Leavitt Path Algebras\",\"authors\":\"M. Ahmadi, A. Moussavi\",\"doi\":\"10.1134/s0037446624030145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We say that a graded ring (<span>\\\\( * \\\\)</span>-ring) <span>\\\\( R \\\\)</span> is a graded quasi-Baer ring (graded quasi-Baer <span>\\\\( * \\\\)</span>-ring)\\nif, for each graded ideal <span>\\\\( I \\\\)</span> of <span>\\\\( R \\\\)</span>, the right annihilator of <span>\\\\( I \\\\)</span> is generated by a homogeneous idempotent (projection).\\nWe prove that a Leavitt path\\nalgebra is quasi-Baer (quasi-Baer <span>\\\\( * \\\\)</span>) if and only if it is graded quasi-Baer (graded quasi-Baer <span>\\\\( * \\\\)</span>).\\nWe show that a Leavitt path algebra is quasi-Baer (quasi-Baer <span>\\\\( * \\\\)</span>) if its zero component is quasi-Baer (quasi-Baer <span>\\\\( * \\\\)</span>).\\nHowever, we give some example that showing that the converse implication fails.\\nFinally, we characterize the Leavitt path algebras that are quasi-Baer <span>\\\\( * \\\\)</span>-rings\\nin terms of the properties of the underlying graph.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0037446624030145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624030145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们说,如果对于 \( R \) 的每个分级理想 \( I \) ,\( I \) 的右湮没子是由一个同质偶等(投影)生成的,那么分级环(\( * \)-环)就是一个分级准贝尔环(分级准贝尔 \( * \)-环)。我们证明,当且仅当一个 Leavitt 路径代数是分级准 Baer(graded quasi-Baer \( * \))时,它才是准 Baer(quasi-Baer \( * \))。我们证明,如果一个 Leavitt 路径代数的零成分是准 Baer(quasi-Baer \( * \)),那么这个 Leavitt 路径代数就是准 Baer(quasi-Baer \( * \))。然而,我们给出了一些例子,表明反向蕴涵是失败的。最后,我们从底层图的性质出发,描述了准 Baer \( * \)-环的 Leavitt 路径代数的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasi-Baer $ * $ -Ring Characterization of Leavitt Path Algebras

分享
查看原文
Quasi-Baer $ * $ -Ring Characterization of Leavitt Path Algebras

We say that a graded ring (\( * \)-ring) \( R \) is a graded quasi-Baer ring (graded quasi-Baer \( * \)-ring) if, for each graded ideal \( I \) of \( R \), the right annihilator of \( I \) is generated by a homogeneous idempotent (projection). We prove that a Leavitt path algebra is quasi-Baer (quasi-Baer \( * \)) if and only if it is graded quasi-Baer (graded quasi-Baer \( * \)). We show that a Leavitt path algebra is quasi-Baer (quasi-Baer \( * \)) if its zero component is quasi-Baer (quasi-Baer \( * \)). However, we give some example that showing that the converse implication fails. Finally, we characterize the Leavitt path algebras that are quasi-Baer \( * \)-rings in terms of the properties of the underlying graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信