基于跳数和跳距校正的 WSN IMOA DV-Hop 定位算法

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiuwu Yu, Wei Peng, Zixiang Zhou, Ke Zhang, Yong Liu
{"title":"基于跳数和跳距校正的 WSN IMOA DV-Hop 定位算法","authors":"Xiuwu Yu, Wei Peng, Zixiang Zhou, Ke Zhang, Yong Liu","doi":"10.1007/s12083-024-01710-1","DOIUrl":null,"url":null,"abstract":"<p>Wireless sensor networks (WSNs) have been widely used in environmental monitoring due to their low cost advantages. In WSNs monitoring, the location information is significant, because data collected by sensor nodes is valuable only if the locations of nodes are known. DV-Hop algorithm is a popular localization algorithm in WSNs monitoring. However, DV-hop has low localization accuracy due to its imperfect hop count, hop distance and location calculation mechanism. Therefore, in order to improve its localization accuracy, we improve the three stages of DV-hop respectively: Firstly, the anchor node broadcasts in three types of communication radius to reduce hop count error. Secondly, we utilize local average hop distance to reduce the hop distance calculation error. Finally, we use the heuristic algorithm MOA to calculate node positions. Meanwhile, we utilize the good point set, t-distribution and Levy flight to improve the global optimization ability of MOA. In simulation experiments, we use Matlab2018a to verify algorithm performance. The simulation results show that the proposed algorithm outperforms the comparison algorithm in different communication radius, number of anchor nodes, and total number of nodes. It performs optimally in both localization efficiency and accuracy, and has better robustness.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"2016 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An IMOA DV-Hop localization algorithm in WSN based on hop count and hop distance correction\",\"authors\":\"Xiuwu Yu, Wei Peng, Zixiang Zhou, Ke Zhang, Yong Liu\",\"doi\":\"10.1007/s12083-024-01710-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wireless sensor networks (WSNs) have been widely used in environmental monitoring due to their low cost advantages. In WSNs monitoring, the location information is significant, because data collected by sensor nodes is valuable only if the locations of nodes are known. DV-Hop algorithm is a popular localization algorithm in WSNs monitoring. However, DV-hop has low localization accuracy due to its imperfect hop count, hop distance and location calculation mechanism. Therefore, in order to improve its localization accuracy, we improve the three stages of DV-hop respectively: Firstly, the anchor node broadcasts in three types of communication radius to reduce hop count error. Secondly, we utilize local average hop distance to reduce the hop distance calculation error. Finally, we use the heuristic algorithm MOA to calculate node positions. Meanwhile, we utilize the good point set, t-distribution and Levy flight to improve the global optimization ability of MOA. In simulation experiments, we use Matlab2018a to verify algorithm performance. The simulation results show that the proposed algorithm outperforms the comparison algorithm in different communication radius, number of anchor nodes, and total number of nodes. It performs optimally in both localization efficiency and accuracy, and has better robustness.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01710-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01710-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络(WSN)因其低成本优势已被广泛应用于环境监测领域。在 WSN 监测中,位置信息非常重要,因为只有知道节点的位置,传感器节点收集的数据才有价值。DV-Hop 算法是 WSN 监测中常用的定位算法。然而,由于跳数、跳距和位置计算机制不完善,DV-hop 的定位精度较低。因此,为了提高其定位精度,我们分别对 DV-hop 的三个阶段进行了改进:首先,锚节点在三种通信半径内进行广播,以减少跳数误差。其次,我们利用本地平均跳距来减少跳距计算误差。最后,我们使用启发式算法 MOA 计算节点位置。同时,我们利用好点集、t 分布和列维飞行来提高 MOA 的全局优化能力。在仿真实验中,我们使用 Matlab2018a 验证了算法性能。仿真结果表明,在不同的通信半径、锚节点数和节点总数下,本文提出的算法优于对比算法。该算法在定位效率和定位精度上都表现最优,并且具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An IMOA DV-Hop localization algorithm in WSN based on hop count and hop distance correction

An IMOA DV-Hop localization algorithm in WSN based on hop count and hop distance correction

Wireless sensor networks (WSNs) have been widely used in environmental monitoring due to their low cost advantages. In WSNs monitoring, the location information is significant, because data collected by sensor nodes is valuable only if the locations of nodes are known. DV-Hop algorithm is a popular localization algorithm in WSNs monitoring. However, DV-hop has low localization accuracy due to its imperfect hop count, hop distance and location calculation mechanism. Therefore, in order to improve its localization accuracy, we improve the three stages of DV-hop respectively: Firstly, the anchor node broadcasts in three types of communication radius to reduce hop count error. Secondly, we utilize local average hop distance to reduce the hop distance calculation error. Finally, we use the heuristic algorithm MOA to calculate node positions. Meanwhile, we utilize the good point set, t-distribution and Levy flight to improve the global optimization ability of MOA. In simulation experiments, we use Matlab2018a to verify algorithm performance. The simulation results show that the proposed algorithm outperforms the comparison algorithm in different communication radius, number of anchor nodes, and total number of nodes. It performs optimally in both localization efficiency and accuracy, and has better robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peer-To-Peer Networking and Applications
Peer-To-Peer Networking and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
8.00
自引率
7.10%
发文量
145
审稿时长
12 months
期刊介绍: The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security. The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain. Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信