运算符玻尔式不等式

Pub Date : 2024-05-28 DOI:10.1515/ms-2024-0035
Mohammad Sababheh, Cristian Conde, Hamid Reza Moradi
{"title":"运算符玻尔式不等式","authors":"Mohammad Sababheh, Cristian Conde, Hamid Reza Moradi","doi":"10.1515/ms-2024-0035","DOIUrl":null,"url":null,"abstract":"The classical Bohr inequality for scalars was extended to the non-commutative case of Hilbert space operators in the literature. The sole goal of this article is to discuss the operator Bohr inequality and present some of its new variants. This includes fresh reverses and refinements of this inequality with applications towards an operator’s real and imaginary parts, not to forget the new discussion of different domains of the parameters. One further application towards the operator Dunkl-Williams inequality will be presented too. While the new results are interesting, we emphasize that the approach used to explore these inequalities differs from the existing literature methods for this context.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator Bohr-type inequalities\",\"authors\":\"Mohammad Sababheh, Cristian Conde, Hamid Reza Moradi\",\"doi\":\"10.1515/ms-2024-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Bohr inequality for scalars was extended to the non-commutative case of Hilbert space operators in the literature. The sole goal of this article is to discuss the operator Bohr inequality and present some of its new variants. This includes fresh reverses and refinements of this inequality with applications towards an operator’s real and imaginary parts, not to forget the new discussion of different domains of the parameters. One further application towards the operator Dunkl-Williams inequality will be presented too. While the new results are interesting, we emphasize that the approach used to explore these inequalities differs from the existing literature methods for this context.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2024-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文献中,经典的标量玻尔不等式被扩展到了希尔伯特空间算子的非交换情形。本文的唯一目的是讨论算子玻尔不等式,并介绍它的一些新变体。这包括对这一不等式的新的反转和完善,以及对算子实部和虚部的应用,同时也不忘对参数的不同域进行新的讨论。此外,我们还将介绍对算子邓克尔-威廉斯不等式的进一步应用。虽然新结果很有趣,但我们强调,用于探索这些不等式的方法与现有文献中的方法有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Operator Bohr-type inequalities
The classical Bohr inequality for scalars was extended to the non-commutative case of Hilbert space operators in the literature. The sole goal of this article is to discuss the operator Bohr inequality and present some of its new variants. This includes fresh reverses and refinements of this inequality with applications towards an operator’s real and imaginary parts, not to forget the new discussion of different domains of the parameters. One further application towards the operator Dunkl-Williams inequality will be presented too. While the new results are interesting, we emphasize that the approach used to explore these inequalities differs from the existing literature methods for this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信