关于超(r,q)-斐波那契多项式

Pub Date : 2024-05-28 DOI:10.1515/ms-2024-0002
Hacéne Belbachir, Fariza Krim
{"title":"关于超(r,q)-斐波那契多项式","authors":"Hacéne Belbachir, Fariza Krim","doi":"10.1515/ms-2024-0002","DOIUrl":null,"url":null,"abstract":"Related to generalized arithmetic triangle, we introduce the hyper (<jats:italic>r</jats:italic>, <jats:italic>q</jats:italic>)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (<jats:italic>r</jats:italic>, <jats:italic>q</jats:italic>)-Fibonacci polynomials defined in this paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On hyper (r, q)-Fibonacci polynomials\",\"authors\":\"Hacéne Belbachir, Fariza Krim\",\"doi\":\"10.1515/ms-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Related to generalized arithmetic triangle, we introduce the hyper (<jats:italic>r</jats:italic>, <jats:italic>q</jats:italic>)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (<jats:italic>r</jats:italic>, <jats:italic>q</jats:italic>)-Fibonacci polynomials defined in this paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2024-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与广义算术三角形相关,我们引入了超 (r, q) - 斐波那契多项式,作为这些元素沿着从特定点出发的有限射线的总和,它是超斐波那契多项式的广义化。我们给出了生成函数和递推关系,并展示了一些性质,这些性质的应用使我们能够扩展卡西尼行列式的概念并研究一些比率。此外,我们还推导出了这些多项式与本文定义的不完全 (r, q) - 斐波那契多项式之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On hyper (r, q)-Fibonacci polynomials
Related to generalized arithmetic triangle, we introduce the hyper (r, q)-Fibonacci polynomials as the sum of these elements along a finite ray starting from a specific point, which generalize the hyper-Fibonacci polynomials. We give generating function, recurrence relations and we show some properties whose application allows us to extend the notion of Cassini determinant and to study some ratios. Moreover, we derive a connection between these polynomials and the incomplete (r, q)-Fibonacci polynomials defined in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信