{"title":"非交换效应代数、L代数和局部对偶性","authors":"Wolfgang Rump","doi":"10.1515/ms-2024-0034","DOIUrl":null,"url":null,"abstract":"GPE-algebras were introduced by Dvurečenskij and Vetterlein as unbounded pseudo-effect algebras. Recently, they have been characterized as partial <jats:italic>L</jats:italic>-algebras with local duality. In the present paper, GPE-algebras with an everywhere defined <jats:italic>L</jats:italic>-algebra operation are investigated. For example, linearly ordered GPE-algebra are of that type. They are characterized by their self-similar closures which are represented as negative cones of totally ordered groups. More generally, GPE-algebras with an everywhere defined multiplication are identified as negative cones of directed groups. If their partial <jats:italic>L</jats:italic>-algebra structure is globally defined, the enveloping group is lattice-ordered. For any self-similar <jats:italic>L</jats:italic>-algebra <jats:italic>A</jats:italic>, exponent maps are introduced, generalizing conjugation in the structure group. It is proved that the exponent maps are <jats:italic>L</jats:italic>-algebra automorphisms of <jats:italic>A</jats:italic> if and only if <jats:italic>A</jats:italic> is a GPE-algebra. As an application, a new characterization of cone algebras is obtained. Lattice GPE-algebras are shown to be equivalent to ∧-closed <jats:italic>L</jats:italic>-algebras with local duality.","PeriodicalId":18282,"journal":{"name":"Mathematica Slovaca","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative effect algebras, L-algebras, and local duality\",\"authors\":\"Wolfgang Rump\",\"doi\":\"10.1515/ms-2024-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPE-algebras were introduced by Dvurečenskij and Vetterlein as unbounded pseudo-effect algebras. Recently, they have been characterized as partial <jats:italic>L</jats:italic>-algebras with local duality. In the present paper, GPE-algebras with an everywhere defined <jats:italic>L</jats:italic>-algebra operation are investigated. For example, linearly ordered GPE-algebra are of that type. They are characterized by their self-similar closures which are represented as negative cones of totally ordered groups. More generally, GPE-algebras with an everywhere defined multiplication are identified as negative cones of directed groups. If their partial <jats:italic>L</jats:italic>-algebra structure is globally defined, the enveloping group is lattice-ordered. For any self-similar <jats:italic>L</jats:italic>-algebra <jats:italic>A</jats:italic>, exponent maps are introduced, generalizing conjugation in the structure group. It is proved that the exponent maps are <jats:italic>L</jats:italic>-algebra automorphisms of <jats:italic>A</jats:italic> if and only if <jats:italic>A</jats:italic> is a GPE-algebra. As an application, a new characterization of cone algebras is obtained. Lattice GPE-algebras are shown to be equivalent to ∧-closed <jats:italic>L</jats:italic>-algebras with local duality.\",\"PeriodicalId\":18282,\"journal\":{\"name\":\"Mathematica Slovaca\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Slovaca\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2024-0034\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Slovaca","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0034","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
GPE 对象是由 Dvurečenskij 和 Vetterlein 作为无界伪效应对象引入的。最近,它们又被表征为具有局部对偶性的部分 L 后拉。本文研究了具有无处不定义的 L 代数运算的 GPE 对象。例如,线性有序 GPE-algebra 就是这种类型。它们的特点是自相似闭包,表示为完全有序群的负锥。更一般地说,具有无处不定义的乘法的 GPE-代数被认定为有向群的负锥。如果它们的偏 L-代数结构是全局定义的,那么包络群就是网格有序的。对于任何自相似 L 代数 A,都引入了指数映射,在结构群中概括了共轭。证明了当且仅当 A 是 GPE 代数时,指数映射是 A 的 L 代数自形变。作为应用,还得到了锥体代数的新特征。网格 GPE-代数被证明等价于具有局部对偶性的 ∧ 封闭 L-代数。
Non-commutative effect algebras, L-algebras, and local duality
GPE-algebras were introduced by Dvurečenskij and Vetterlein as unbounded pseudo-effect algebras. Recently, they have been characterized as partial L-algebras with local duality. In the present paper, GPE-algebras with an everywhere defined L-algebra operation are investigated. For example, linearly ordered GPE-algebra are of that type. They are characterized by their self-similar closures which are represented as negative cones of totally ordered groups. More generally, GPE-algebras with an everywhere defined multiplication are identified as negative cones of directed groups. If their partial L-algebra structure is globally defined, the enveloping group is lattice-ordered. For any self-similar L-algebra A, exponent maps are introduced, generalizing conjugation in the structure group. It is proved that the exponent maps are L-algebra automorphisms of A if and only if A is a GPE-algebra. As an application, a new characterization of cone algebras is obtained. Lattice GPE-algebras are shown to be equivalent to ∧-closed L-algebras with local duality.
期刊介绍:
Mathematica Slovaca, the oldest and best mathematical journal in Slovakia, was founded in 1951 at the Mathematical Institute of the Slovak Academy of Science, Bratislava. It covers practically all mathematical areas. As a respectful international mathematical journal, it publishes only highly nontrivial original articles with complete proofs by assuring a high quality reviewing process. Its reputation was approved by many outstanding mathematicians who already contributed to Math. Slovaca. It makes bridges among mathematics, physics, soft computing, cryptography, biology, economy, measuring, etc. The Journal publishes original articles with complete proofs. Besides short notes the journal publishes also surveys as well as some issues are focusing on a theme of current interest.