退化热带干旱森林景观中树木的地下分化:没有证据表明存在协作梯度

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juan Pablo Benavides-Tocarruncho, Horacio Paz, Nelly Rodríguez, Rosa Arrieta, Camila Pizano, Beatriz Salgado-Negret
{"title":"退化热带干旱森林景观中树木的地下分化:没有证据表明存在协作梯度","authors":"Juan Pablo Benavides-Tocarruncho, Horacio Paz, Nelly Rodríguez, Rosa Arrieta, Camila Pizano, Beatriz Salgado-Negret","doi":"10.1017/s0266467424000129","DOIUrl":null,"url":null,"abstract":"Fine roots are specialized in nutrient and water acquisition and are critical for species performance and ecosystem functioning. Recent evidence has shown a broad root economic space determined by the orthogonal collaboration and conservation gradients related to resource acquisition and resource conservation, respectively. However, whether these gradients exist among tree species growing in degraded ecosystems where root growth is limited by soil conditions is much an open question. We measured six fine root traits (root diameter, specific root length, root dry matter content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and (2) the patterns of belowground niche differentiation among 11 species coexisting under the same soil conditions. The covariation between fine root traits resembled the acquisitive-conservative, but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine root trait. Furthermore, we found a strong belowground differentiation among species, mainly across root diameter and branching intensity. Our results suggest that compacted degraded soils in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that needs to be tested with more species and sites. We discuss the importance of using root traits to aid species selection for restoration purposes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Belowground differentiation among trees in a degraded tropical dry forest landscape: no evidence of a collaboration gradient\",\"authors\":\"Juan Pablo Benavides-Tocarruncho, Horacio Paz, Nelly Rodríguez, Rosa Arrieta, Camila Pizano, Beatriz Salgado-Negret\",\"doi\":\"10.1017/s0266467424000129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine roots are specialized in nutrient and water acquisition and are critical for species performance and ecosystem functioning. Recent evidence has shown a broad root economic space determined by the orthogonal collaboration and conservation gradients related to resource acquisition and resource conservation, respectively. However, whether these gradients exist among tree species growing in degraded ecosystems where root growth is limited by soil conditions is much an open question. We measured six fine root traits (root diameter, specific root length, root dry matter content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and (2) the patterns of belowground niche differentiation among 11 species coexisting under the same soil conditions. The covariation between fine root traits resembled the acquisitive-conservative, but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine root trait. Furthermore, we found a strong belowground differentiation among species, mainly across root diameter and branching intensity. Our results suggest that compacted degraded soils in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that needs to be tested with more species and sites. We discuss the importance of using root traits to aid species selection for restoration purposes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266467424000129\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0266467424000129","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细根专门获取养分和水分,对物种的表现和生态系统的功能至关重要。最近的证据表明,与资源获取和资源保护相关的正交协作梯度和保护梯度分别决定了广阔的根系经济空间。然而,在根系生长受土壤条件限制的退化生态系统中生长的树种是否存在这些梯度还是一个未决问题。我们测量了在哥伦比亚热带干旱森林(TDF)退化牧场中共生生长9年的11种幼树的6个细根性状(根直径、比根长、根干物质含量、根组织密度、分枝强度和丛枝菌根定殖率),以确定(1)细根性状之间的共变性和(2)在相同土壤条件下共生的11种树种的地下生态位分化模式。细根性状之间的共变性类似于获得性-保守性,但不类似于这一退化栖息地的协作梯度。与协作梯度相关的一个关键特征--菌根定殖的百分比与任何细根特征都无关。此外,我们还发现物种之间存在强烈的地下分化,主要体现在根系直径和分枝强度上。我们的研究结果表明,TDF景观中压实的退化土壤可能会影响与菌根的协作关系,主要导致物种沿着 "自己动手 "梯度分化。这一发现提出了一个假设,需要用更多的物种和地点进行检验。我们讨论了利用根系特征帮助物种选择以达到恢复目的的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Belowground differentiation among trees in a degraded tropical dry forest landscape: no evidence of a collaboration gradient
Fine roots are specialized in nutrient and water acquisition and are critical for species performance and ecosystem functioning. Recent evidence has shown a broad root economic space determined by the orthogonal collaboration and conservation gradients related to resource acquisition and resource conservation, respectively. However, whether these gradients exist among tree species growing in degraded ecosystems where root growth is limited by soil conditions is much an open question. We measured six fine root traits (root diameter, specific root length, root dry matter content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and (2) the patterns of belowground niche differentiation among 11 species coexisting under the same soil conditions. The covariation between fine root traits resembled the acquisitive-conservative, but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine root trait. Furthermore, we found a strong belowground differentiation among species, mainly across root diameter and branching intensity. Our results suggest that compacted degraded soils in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that needs to be tested with more species and sites. We discuss the importance of using root traits to aid species selection for restoration purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信