关于帕多万数或佩林数作为以 $$\delta $$ 为基数的三个重数的乘积

Pagdame Tiebekabe, Kouèssi Norbert Adédji
{"title":"关于帕多万数或佩林数作为以 $$\\delta $$ 为基数的三个重数的乘积","authors":"Pagdame Tiebekabe, Kouèssi Norbert Adédji","doi":"10.1007/s13226-024-00599-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(P_m\\)</span> and <span>\\(E_m\\)</span> be the <i>m</i>-th Padovan and Perrin numbers, respectively. In this paper, we prove that for a fixed integer <span>\\(\\delta \\)</span> with <span>\\(\\delta \\ge 2\\)</span> there exists finitely many Padovan and Perrin numbers that can be represented as products of three repdigits in base <span>\\(\\delta .\\)</span> Moreover, we explicitly find these numbers for <span>\\(2\\le \\delta \\le 10\\)</span> as an application.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Padovan or Perrin numbers as products of three repdigits in base $$\\\\delta $$\",\"authors\":\"Pagdame Tiebekabe, Kouèssi Norbert Adédji\",\"doi\":\"10.1007/s13226-024-00599-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(P_m\\\\)</span> and <span>\\\\(E_m\\\\)</span> be the <i>m</i>-th Padovan and Perrin numbers, respectively. In this paper, we prove that for a fixed integer <span>\\\\(\\\\delta \\\\)</span> with <span>\\\\(\\\\delta \\\\ge 2\\\\)</span> there exists finitely many Padovan and Perrin numbers that can be represented as products of three repdigits in base <span>\\\\(\\\\delta .\\\\)</span> Moreover, we explicitly find these numbers for <span>\\\\(2\\\\le \\\\delta \\\\le 10\\\\)</span> as an application.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00599-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00599-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(P_m\) 和 \(E_m\) 分别是第 m 个帕多万数和佩林数。在本文中,我们证明了对于一个固定的整数 \(\delta \) with \(\delta \ge 2\) 存在有限多个帕多万数和佩林数,这些数可以表示为基数 \(\delta .\) 中三个重数字的乘积,而且,作为一个应用,我们明确地找到了这些数为 \(2\le \delta \le 10\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Padovan or Perrin numbers as products of three repdigits in base $$\delta $$

Let \(P_m\) and \(E_m\) be the m-th Padovan and Perrin numbers, respectively. In this paper, we prove that for a fixed integer \(\delta \) with \(\delta \ge 2\) there exists finitely many Padovan and Perrin numbers that can be represented as products of three repdigits in base \(\delta .\) Moreover, we explicitly find these numbers for \(2\le \delta \le 10\) as an application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信