一般非凸-凹最小问题的无衍生交替投影算法

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Zi Xu, Ziqi Wang, Jingjing Shen, Yuhong Dai
{"title":"一般非凸-凹最小问题的无衍生交替投影算法","authors":"Zi Xu, Ziqi Wang, Jingjing Shen, Yuhong Dai","doi":"10.1137/23m1568168","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1879-1908, June 2024. <br/> Abstract. In this paper, we study zeroth-order algorithms for nonconvex-concave minimax problems, which have attracted much attention in machine learning, signal processing, and many other fields in recent years. We propose a zeroth-order alternating randomized gradient projection (ZO-AGP) algorithm for smooth nonconvex-concave minimax problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates is bounded by [math] per iteration. Moreover, we propose a zeroth-order block alternating randomized proximal gradient algorithm (ZO-BAPG) for solving blockwise nonsmooth nonconvex-concave minimax optimization problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates per iteration is bounded by [math]. To the best of our knowledge, this is the first time zeroth-order algorithms with iteration complexity guarantee are developed for solving both general smooth and blockwise nonsmooth nonconvex-concave minimax problems. Numerical results on the data poisoning attack problem and the distributed nonconvex sparse principal component analysis problem validate the efficiency of the proposed algorithms.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"64 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivative-Free Alternating Projection Algorithms for General Nonconvex-Concave Minimax Problems\",\"authors\":\"Zi Xu, Ziqi Wang, Jingjing Shen, Yuhong Dai\",\"doi\":\"10.1137/23m1568168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1879-1908, June 2024. <br/> Abstract. In this paper, we study zeroth-order algorithms for nonconvex-concave minimax problems, which have attracted much attention in machine learning, signal processing, and many other fields in recent years. We propose a zeroth-order alternating randomized gradient projection (ZO-AGP) algorithm for smooth nonconvex-concave minimax problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates is bounded by [math] per iteration. Moreover, we propose a zeroth-order block alternating randomized proximal gradient algorithm (ZO-BAPG) for solving blockwise nonsmooth nonconvex-concave minimax optimization problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates per iteration is bounded by [math]. To the best of our knowledge, this is the first time zeroth-order algorithms with iteration complexity guarantee are developed for solving both general smooth and blockwise nonsmooth nonconvex-concave minimax problems. Numerical results on the data poisoning attack problem and the distributed nonconvex sparse principal component analysis problem validate the efficiency of the proposed algorithms.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1568168\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1568168","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 2 期,第 1879-1908 页,2024 年 6 月。 摘要本文研究了非凸-凹 minimax 问题的零阶算法,该问题近年来在机器学习、信号处理等诸多领域备受关注。我们提出了一种针对平滑非凸-凹 minimax 问题的零阶交替随机梯度投影(ZO-AGP)算法;其获得[math]-静态点的迭代复杂度的边界为[math],每次迭代的函数值估计次数的边界为[math]。此外,我们还提出了一种零阶块交替随机近端梯度算法(ZO-BAPG),用于求解分块非光滑非凸-凹 minimax 优化问题;其获得[数学]稳态点的迭代复杂度受[数学]约束,每次迭代的函数值估计次数受[数学]约束。据我们所知,这是首次开发出具有迭代复杂度保证的零阶算法,用于求解一般光滑和块状非光滑非凸-凹 minimax 问题。数据中毒攻击问题和分布式非凸稀疏主成分分析问题的数值结果验证了所提算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivative-Free Alternating Projection Algorithms for General Nonconvex-Concave Minimax Problems
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1879-1908, June 2024.
Abstract. In this paper, we study zeroth-order algorithms for nonconvex-concave minimax problems, which have attracted much attention in machine learning, signal processing, and many other fields in recent years. We propose a zeroth-order alternating randomized gradient projection (ZO-AGP) algorithm for smooth nonconvex-concave minimax problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates is bounded by [math] per iteration. Moreover, we propose a zeroth-order block alternating randomized proximal gradient algorithm (ZO-BAPG) for solving blockwise nonsmooth nonconvex-concave minimax optimization problems; its iteration complexity to obtain an [math]-stationary point is bounded by [math], and the number of function value estimates per iteration is bounded by [math]. To the best of our knowledge, this is the first time zeroth-order algorithms with iteration complexity guarantee are developed for solving both general smooth and blockwise nonsmooth nonconvex-concave minimax problems. Numerical results on the data poisoning attack problem and the distributed nonconvex sparse principal component analysis problem validate the efficiency of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信