{"title":"添加细木屑可加速中国高纬度城市种植园土壤碳库的周转","authors":"Honglin Xing, Hao Zhang, Guoru Tang, Tianhe Yuan, Hailong Shen, Ling Yang","doi":"10.1007/s11368-024-03823-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The decomposition and transformation of woody debris (WD) generated during forest growth and management have a significant impact on soil organic carbon (SOC) dynamics and carbon balance. However, our understanding of the impact of WD on SOC in urban plantations remains limited. To fill this gap, we conducted this study.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>In this study, we established four treatments involving the addition of fine woody debris (FWD) on the soil of six urban plantations in Harbin, Heilongjiang Province, China, to investigate changes in SOC. The four treatments for adding FWD were as follows: Control, low-dose carbon addition (LC), medium-dose carbon addition (MC), and high-dose carbon addition (HC). The added carbon content in the four treatments was 0 g m<sup>−2</sup>, 250 g m<sup>−2</sup>, 500 g m<sup>−2</sup>,1000 g m<sup>−2</sup>. After 13 months, we measured the dynamic changes of SOC and nitrogen fractions as well as the characteristics of the carbon pool in the 0–10 cm thick soil layer.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The study results indicate that, when compared with the control group, the addition of FWD had a noteworthy impact on basic soil parameters such as soil water content, pH, and total nitrogen. This addition resulted in an augmentation of labile organic carbon fractions, including microbial biomass carbon and easily oxidizable organic carbon. However, no significant effect was observed on the content and storage of SOC. In addition, it is found that adding FWD has a significant positive effect on carbon pool management index (CPMI), while CPMI has a significant negative effect on SOC.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The addition of FWD to urban plantations in Heilongjiang Province, China, for 13 months can increase the turnover of SOC and improve soil quality. However, the increase in SOC storage is limited and a longer decomposition time might be necessary to see a significant SOC sequestration effect.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding fine woody debris accelerates the turnover of soil carbon pool in high-latitude urban plantations in China\",\"authors\":\"Honglin Xing, Hao Zhang, Guoru Tang, Tianhe Yuan, Hailong Shen, Ling Yang\",\"doi\":\"10.1007/s11368-024-03823-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>The decomposition and transformation of woody debris (WD) generated during forest growth and management have a significant impact on soil organic carbon (SOC) dynamics and carbon balance. However, our understanding of the impact of WD on SOC in urban plantations remains limited. To fill this gap, we conducted this study.</p><h3 data-test=\\\"abstract-sub-heading\\\">Materials and methods</h3><p>In this study, we established four treatments involving the addition of fine woody debris (FWD) on the soil of six urban plantations in Harbin, Heilongjiang Province, China, to investigate changes in SOC. The four treatments for adding FWD were as follows: Control, low-dose carbon addition (LC), medium-dose carbon addition (MC), and high-dose carbon addition (HC). The added carbon content in the four treatments was 0 g m<sup>−2</sup>, 250 g m<sup>−2</sup>, 500 g m<sup>−2</sup>,1000 g m<sup>−2</sup>. After 13 months, we measured the dynamic changes of SOC and nitrogen fractions as well as the characteristics of the carbon pool in the 0–10 cm thick soil layer.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The study results indicate that, when compared with the control group, the addition of FWD had a noteworthy impact on basic soil parameters such as soil water content, pH, and total nitrogen. This addition resulted in an augmentation of labile organic carbon fractions, including microbial biomass carbon and easily oxidizable organic carbon. However, no significant effect was observed on the content and storage of SOC. In addition, it is found that adding FWD has a significant positive effect on carbon pool management index (CPMI), while CPMI has a significant negative effect on SOC.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>The addition of FWD to urban plantations in Heilongjiang Province, China, for 13 months can increase the turnover of SOC and improve soil quality. However, the increase in SOC storage is limited and a longer decomposition time might be necessary to see a significant SOC sequestration effect.</p>\",\"PeriodicalId\":17139,\"journal\":{\"name\":\"Journal of Soils and Sediments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soils and Sediments\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11368-024-03823-9\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03823-9","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
目的 森林生长和管理过程中产生的木质碎屑(WD)的分解和转化对土壤有机碳(SOC)动态和碳平衡有重大影响。然而,我们对城市人工林中 WD 对 SOC 影响的了解仍然有限。为了填补这一空白,我们开展了这项研究。材料与方法在这项研究中,我们在中国黑龙江省哈尔滨市的六个城市人工林的土壤中设置了四种添加细木屑(FWD)的处理,以研究 SOC 的变化。添加细木屑的四个处理如下对照组、低剂量碳添加组(LC)、中剂量碳添加组(MC)和高剂量碳添加组(HC)。四个处理的碳添加量分别为 0 g m-2、250 g m-2、500 g m-2 和 1000 g m-2。13 个月后,我们测量了 0-10 厘米厚土壤层中 SOC 和氮组分的动态变化以及碳库的特征。研究结果表明,与对照组相比,添加 FWD 对土壤水分含量、pH 值和总氮等基本土壤参数有显著影响。添加后,包括微生物生物量碳和易氧化有机碳在内的易变有机碳组分有所增加。不过,对 SOC 的含量和储存量没有观察到明显的影响。此外,研究还发现,添加 FWD 对碳库管理指数(CPMI)有显著的正向影响,而 CPMI 对 SOC 有显著的负向影响。然而,SOC 储量的增加是有限的,可能需要更长的分解时间才能看到明显的 SOC 固碳效果。
Adding fine woody debris accelerates the turnover of soil carbon pool in high-latitude urban plantations in China
Purpose
The decomposition and transformation of woody debris (WD) generated during forest growth and management have a significant impact on soil organic carbon (SOC) dynamics and carbon balance. However, our understanding of the impact of WD on SOC in urban plantations remains limited. To fill this gap, we conducted this study.
Materials and methods
In this study, we established four treatments involving the addition of fine woody debris (FWD) on the soil of six urban plantations in Harbin, Heilongjiang Province, China, to investigate changes in SOC. The four treatments for adding FWD were as follows: Control, low-dose carbon addition (LC), medium-dose carbon addition (MC), and high-dose carbon addition (HC). The added carbon content in the four treatments was 0 g m−2, 250 g m−2, 500 g m−2,1000 g m−2. After 13 months, we measured the dynamic changes of SOC and nitrogen fractions as well as the characteristics of the carbon pool in the 0–10 cm thick soil layer.
Results
The study results indicate that, when compared with the control group, the addition of FWD had a noteworthy impact on basic soil parameters such as soil water content, pH, and total nitrogen. This addition resulted in an augmentation of labile organic carbon fractions, including microbial biomass carbon and easily oxidizable organic carbon. However, no significant effect was observed on the content and storage of SOC. In addition, it is found that adding FWD has a significant positive effect on carbon pool management index (CPMI), while CPMI has a significant negative effect on SOC.
Conclusions
The addition of FWD to urban plantations in Heilongjiang Province, China, for 13 months can increase the turnover of SOC and improve soil quality. However, the increase in SOC storage is limited and a longer decomposition time might be necessary to see a significant SOC sequestration effect.
期刊介绍:
The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.