{"title":"具有非标准增长的积分函数的先验有界最小化的 Lipschitz 正则性","authors":"Michela Eleuteri, Antonia Passarelli di Napoli","doi":"10.1007/s11118-024-10146-4","DOIUrl":null,"url":null,"abstract":"<p>We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth\",\"authors\":\"Michela Eleuteri, Antonia Passarelli di Napoli\",\"doi\":\"10.1007/s11118-024-10146-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10146-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10146-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Lipschitz Regularity for a Priori Bounded Minimizers of Integral Functionals with Nonstandard Growth
We establish the Lipschitz regularity of the a priori bounded local minimizers of integral functionals with non autonomous energy densities satisfying non standard growth conditions under a bound on the gap between the growth and the ellipticity exponent that is reminiscent of the sharp bound already found in [16].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.