跨岩石圈断层在活动边缘长期地震构造分割中的作用:安第斯山脉案例研究

IF 3.2 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Gonzalo Yanez, Jose Piquer, Orlando Rivera
{"title":"跨岩石圈断层在活动边缘长期地震构造分割中的作用:安第斯山脉案例研究","authors":"Gonzalo Yanez, Jose Piquer, Orlando Rivera","doi":"10.5194/egusphere-2024-1338","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Plate coupling play a fundamental role in the way in which seismic energy is released during the seismic cycle. This process includes quasi-instantaneous release during megathrust earthquakes and long-term creep. Both mechanisms can coexist in a given subducting margin, defining a seismotectonic segmentation in which seismically active segments are separated by zones in which ruptures stop, classified for simplicity as asperities and barrier, respectively. The spatiotemporal stability of this segmentation has been a matter of debate in the seismological community for decades. At this regard, we explore in this paper the potential role of the interaction between geological heterogeneities in the overriding plate and fluids released from the subducting slab towards the subduction channel. As a case study, we take the convergence between the Nazca and South American plates between 18°–40° S, given its relatively simple convergence style and the availability of a high-quality instrumental and historical record. We postulate that trans-lithospheric faults striking at a high angle with respect to the trench behave as large fluid sinks that create the appropriate conditions for the development of barriers and promote the growth of highly coupled asperity domains in their periphery. We tested this hypothesis against key short- and long-term observations in the study area, obtaining consistent results. If the spatial distribution of asperities is controlled by the geology of the overriding plate, seismic risk assessment could be established with better confidence.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":"56 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes\",\"authors\":\"Gonzalo Yanez, Jose Piquer, Orlando Rivera\",\"doi\":\"10.5194/egusphere-2024-1338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Plate coupling play a fundamental role in the way in which seismic energy is released during the seismic cycle. This process includes quasi-instantaneous release during megathrust earthquakes and long-term creep. Both mechanisms can coexist in a given subducting margin, defining a seismotectonic segmentation in which seismically active segments are separated by zones in which ruptures stop, classified for simplicity as asperities and barrier, respectively. The spatiotemporal stability of this segmentation has been a matter of debate in the seismological community for decades. At this regard, we explore in this paper the potential role of the interaction between geological heterogeneities in the overriding plate and fluids released from the subducting slab towards the subduction channel. As a case study, we take the convergence between the Nazca and South American plates between 18°–40° S, given its relatively simple convergence style and the availability of a high-quality instrumental and historical record. We postulate that trans-lithospheric faults striking at a high angle with respect to the trench behave as large fluid sinks that create the appropriate conditions for the development of barriers and promote the growth of highly coupled asperity domains in their periphery. We tested this hypothesis against key short- and long-term observations in the study area, obtaining consistent results. If the spatial distribution of asperities is controlled by the geology of the overriding plate, seismic risk assessment could be established with better confidence.\",\"PeriodicalId\":21912,\"journal\":{\"name\":\"Solid Earth\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1338\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1338","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要板块耦合对地震周期中地震能量的释放方式起着根本性的作用。这一过程包括大地壳地震时的准瞬时释放和长期蠕变。在特定的俯冲边缘,这两种机制可能同时存在,从而形成地震构造分段,其中地震活动段被断裂停止区隔开,为简单起见,断裂停止区分别被划分为尖顶区和屏障区。几十年来,地震学界一直在争论这种分段的时空稳定性。为此,我们在本文中探讨了凌覆板块中的地质异质性与俯冲板块向俯冲通道释放的流体之间相互作用的潜在作用。我们以南纬18°-40°之间的纳斯卡板块和南美板块的汇聚为例进行研究,因为其汇聚方式相对简单,而且有高质量的仪器和历史记录。我们推测,与海沟呈高角度的跨岩石圈断层是一个大的流体汇,它为障碍物的发展创造了适当的条件,并促进了其外围高度耦合的尖顶域的生长。我们根据研究区域的主要短期和长期观测结果对这一假设进行了检验,得到了一致的结果。如果非主流的空间分布受到凌空板块地质的控制,那么地震风险评估就能更有把握地进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the role of trans-lithospheric faults in the long-term seismotectonic segmentation of active margins: a case study in the Andes
Abstract. Plate coupling play a fundamental role in the way in which seismic energy is released during the seismic cycle. This process includes quasi-instantaneous release during megathrust earthquakes and long-term creep. Both mechanisms can coexist in a given subducting margin, defining a seismotectonic segmentation in which seismically active segments are separated by zones in which ruptures stop, classified for simplicity as asperities and barrier, respectively. The spatiotemporal stability of this segmentation has been a matter of debate in the seismological community for decades. At this regard, we explore in this paper the potential role of the interaction between geological heterogeneities in the overriding plate and fluids released from the subducting slab towards the subduction channel. As a case study, we take the convergence between the Nazca and South American plates between 18°–40° S, given its relatively simple convergence style and the availability of a high-quality instrumental and historical record. We postulate that trans-lithospheric faults striking at a high angle with respect to the trench behave as large fluid sinks that create the appropriate conditions for the development of barriers and promote the growth of highly coupled asperity domains in their periphery. We tested this hypothesis against key short- and long-term observations in the study area, obtaining consistent results. If the spatial distribution of asperities is controlled by the geology of the overriding plate, seismic risk assessment could be established with better confidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid Earth
Solid Earth GEOCHEMISTRY & GEOPHYSICS-
CiteScore
6.90
自引率
8.80%
发文量
78
审稿时长
4.5 months
期刊介绍: Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines: geochemistry, mineralogy, petrology, volcanology; geodesy and gravity; geodynamics: numerical and analogue modeling of geoprocesses; geoelectrics and electromagnetics; geomagnetism; geomorphology, morphotectonics, and paleoseismology; rock physics; seismics and seismology; critical zone science (Earth''s permeable near-surface layer); stratigraphy, sedimentology, and palaeontology; rock deformation, structural geology, and tectonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信