一维立方-五次方薛定谔方程的小驻留孤波的渐近稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS
Yvan Martel
{"title":"一维立方-五次方薛定谔方程的小驻留孤波的渐近稳定性","authors":"Yvan Martel","doi":"10.1007/s00222-024-01270-4","DOIUrl":null,"url":null,"abstract":"<p>For the Schrödinger equation with a cubic-quintic, focusing-focusing nonlinearity in one space dimension, this article proves the local asymptotic completeness of the family of small standing solitary waves under even perturbations in the energy space. For this model, perturbative of the integrable cubic Schrödinger equation for small solutions, the linearized equation around a small solitary wave has an internal mode, whose contribution to the dynamics is handled by the Fermi golden rule.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"23 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic stability of small standing solitary waves of the one-dimensional cubic-quintic Schrödinger equation\",\"authors\":\"Yvan Martel\",\"doi\":\"10.1007/s00222-024-01270-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the Schrödinger equation with a cubic-quintic, focusing-focusing nonlinearity in one space dimension, this article proves the local asymptotic completeness of the family of small standing solitary waves under even perturbations in the energy space. For this model, perturbative of the integrable cubic Schrödinger equation for small solutions, the linearized equation around a small solitary wave has an internal mode, whose contribution to the dynamics is handled by the Fermi golden rule.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01270-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01270-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于在一个空间维度上具有三次-五次、聚焦-聚焦非线性的薛定谔方程,本文证明了小驻留孤波族在能量空间均匀扰动下的局部渐近完备性。该模型是可积分立方薛定谔方程小解的扰动模型,围绕小孤波的线性化方程有一个内模,其对动力学的贡献由费米黄金法则处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic stability of small standing solitary waves of the one-dimensional cubic-quintic Schrödinger equation

For the Schrödinger equation with a cubic-quintic, focusing-focusing nonlinearity in one space dimension, this article proves the local asymptotic completeness of the family of small standing solitary waves under even perturbations in the energy space. For this model, perturbative of the integrable cubic Schrödinger equation for small solutions, the linearized equation around a small solitary wave has an internal mode, whose contribution to the dynamics is handled by the Fermi golden rule.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信