{"title":"论非正曲率有限体积非紧凑流形的末端","authors":"Ran Ji, Yunhui Wu","doi":"10.1007/s00222-024-01266-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper we confirm a folklore conjecture which suggests that for a complete noncompact manifold <span>\\(M\\)</span> of finite volume with sectional curvature <span>\\(-1 \\leq K \\leq 0\\)</span>, if the universal cover of <span>\\(M\\)</span> is a visibility manifold, then the fundamental group of each end of <span>\\(M\\)</span> is almost nilpotent.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"54 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ends of finite-volume noncompact manifolds of nonpositive curvature\",\"authors\":\"Ran Ji, Yunhui Wu\",\"doi\":\"10.1007/s00222-024-01266-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we confirm a folklore conjecture which suggests that for a complete noncompact manifold <span>\\\\(M\\\\)</span> of finite volume with sectional curvature <span>\\\\(-1 \\\\leq K \\\\leq 0\\\\)</span>, if the universal cover of <span>\\\\(M\\\\)</span> is a visibility manifold, then the fundamental group of each end of <span>\\\\(M\\\\)</span> is almost nilpotent.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01266-0\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01266-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证实了一个民间猜想,即对于一个具有截面曲率(-1 \leq K \leq 0\)的有限体积的完整非紧密流形(M\),如果(M\)的普盖是一个可见流形,那么(M\)的每个端部的基群几乎都是零potent。
On ends of finite-volume noncompact manifolds of nonpositive curvature
In this paper we confirm a folklore conjecture which suggests that for a complete noncompact manifold \(M\) of finite volume with sectional curvature \(-1 \leq K \leq 0\), if the universal cover of \(M\) is a visibility manifold, then the fundamental group of each end of \(M\) is almost nilpotent.
期刊介绍:
This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).