{"title":"用于在线社交网络垃圾邮件发送者检测的马尔可夫增强图注意网络","authors":"Ashutosh Tripathi, Mohona Ghosh, Kusum Kumari Bharti","doi":"10.1007/s10115-024-02137-z","DOIUrl":null,"url":null,"abstract":"<p>Online social networks (OSNs) are an indispensable part of social communication where people connect and share information. Spammers and other malicious actors use the OSN’s power to propagate spam content. In an OSN with mutual relations between nodes, two kinds of spammer detection methods can be employed: feature based and propagation based. However, both of these are incomplete in themselves. The feature-based methods cannot exploit mutual connections between nodes, and propagation-based methods cannot utilize the rich discriminating node features. We propose a hybrid model—Markov enhanced graph attention network (MEGAT)—using graph attention networks (GAT) and pairwise Markov random fields (pMRF) for the spammer detection task. It efficiently utilizes node features as well as propagation information. We experiment our GAT model with a smoother <i>Swish</i> activation function having non-monotonic derivatives, instead of the <i>leakyReLU</i> function. The experiments performed on a real-world Twitter Social Honeypot (TwitterSH) benchmark dataset and subsequent comparative analysis reveal that our proposed MEGAT model outperforms the state-of-the-art models in accuracy, precision–recall area under curve (PRAUC), and F1-score performance measures.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"12 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov enhanced graph attention network for spammer detection in online social network\",\"authors\":\"Ashutosh Tripathi, Mohona Ghosh, Kusum Kumari Bharti\",\"doi\":\"10.1007/s10115-024-02137-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online social networks (OSNs) are an indispensable part of social communication where people connect and share information. Spammers and other malicious actors use the OSN’s power to propagate spam content. In an OSN with mutual relations between nodes, two kinds of spammer detection methods can be employed: feature based and propagation based. However, both of these are incomplete in themselves. The feature-based methods cannot exploit mutual connections between nodes, and propagation-based methods cannot utilize the rich discriminating node features. We propose a hybrid model—Markov enhanced graph attention network (MEGAT)—using graph attention networks (GAT) and pairwise Markov random fields (pMRF) for the spammer detection task. It efficiently utilizes node features as well as propagation information. We experiment our GAT model with a smoother <i>Swish</i> activation function having non-monotonic derivatives, instead of the <i>leakyReLU</i> function. The experiments performed on a real-world Twitter Social Honeypot (TwitterSH) benchmark dataset and subsequent comparative analysis reveal that our proposed MEGAT model outperforms the state-of-the-art models in accuracy, precision–recall area under curve (PRAUC), and F1-score performance measures.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02137-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02137-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
在线社交网络(OSN)是社会交流中不可或缺的一部分,人们在这里建立联系并分享信息。垃圾邮件发送者和其他恶意行为者利用 OSN 的力量传播垃圾邮件内容。在节点之间存在相互关系的 OSN 中,可以采用两种垃圾邮件发送者检测方法:基于特征的方法和基于传播的方法。然而,这两种方法本身都是不完整的。基于特征的方法无法利用节点之间的相互联系,而基于传播的方法则无法利用丰富的节点判别特征。我们提出了一种混合模型--马尔可夫增强图注意力网络(MEGAT)--利用图注意力网络(GAT)和成对马尔可夫随机场(pMRF)来完成垃圾邮件检测任务。它有效地利用了节点特征和传播信息。我们使用具有非单调导数的更平滑 Swish 激活函数,而不是 leakyReLU 函数来实验我们的 GAT 模型。在真实世界的 Twitter 社交蜜罐(TwitterSH)基准数据集上进行的实验和随后的比较分析表明,我们提出的 MEGAT 模型在准确率、精确度-召回曲线下面积(PRAUC)和 F1 分数等性能指标上都优于最先进的模型。
Markov enhanced graph attention network for spammer detection in online social network
Online social networks (OSNs) are an indispensable part of social communication where people connect and share information. Spammers and other malicious actors use the OSN’s power to propagate spam content. In an OSN with mutual relations between nodes, two kinds of spammer detection methods can be employed: feature based and propagation based. However, both of these are incomplete in themselves. The feature-based methods cannot exploit mutual connections between nodes, and propagation-based methods cannot utilize the rich discriminating node features. We propose a hybrid model—Markov enhanced graph attention network (MEGAT)—using graph attention networks (GAT) and pairwise Markov random fields (pMRF) for the spammer detection task. It efficiently utilizes node features as well as propagation information. We experiment our GAT model with a smoother Swish activation function having non-monotonic derivatives, instead of the leakyReLU function. The experiments performed on a real-world Twitter Social Honeypot (TwitterSH) benchmark dataset and subsequent comparative analysis reveal that our proposed MEGAT model outperforms the state-of-the-art models in accuracy, precision–recall area under curve (PRAUC), and F1-score performance measures.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.