彻底合成 "微分几何的双向模型

Matías Menni
{"title":"彻底合成 \"微分几何的双向模型","authors":"Matías Menni","doi":"arxiv-2405.17748","DOIUrl":null,"url":null,"abstract":"The radically synthetic foundation for smooth geometry formulated in [Law11]\npostulates a space T with the property that it has a unique point and, out of\nthe monoid T^T of endomorphisms, it extracts a submonoid R which, in many\ncases, is the (commutative) multiplication of a rig structure. The rig R is\nsaid to be bi-directional if its subobject of invertible elements has two\nconnected components. In this case, R may be equipped with a pre-order\ncompatible with the rig structure. We adjust the construction of `well-adapted'\nmodels of Synthetic Differential Geometry in order to build the first\npre-cohesive toposes with a bi-directional R. We also show that, in one of\nthese pre-cohesive variants, the pre-order on R, derived radically\nsynthetically from bi-directionality, coincides with that defined in the\noriginal model.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-directional models of `radically synthetic' differential geometry\",\"authors\":\"Matías Menni\",\"doi\":\"arxiv-2405.17748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radically synthetic foundation for smooth geometry formulated in [Law11]\\npostulates a space T with the property that it has a unique point and, out of\\nthe monoid T^T of endomorphisms, it extracts a submonoid R which, in many\\ncases, is the (commutative) multiplication of a rig structure. The rig R is\\nsaid to be bi-directional if its subobject of invertible elements has two\\nconnected components. In this case, R may be equipped with a pre-order\\ncompatible with the rig structure. We adjust the construction of `well-adapted'\\nmodels of Synthetic Differential Geometry in order to build the first\\npre-cohesive toposes with a bi-directional R. We also show that, in one of\\nthese pre-cohesive variants, the pre-order on R, derived radically\\nsynthetically from bi-directionality, coincides with that defined in the\\noriginal model.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.17748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.17748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Law11]中提出的光滑几何的根本合成基础假定了一个空间 T,其性质是它有一个唯一的点,并且从内态性的单元 T^T 中提取出一个子单元 R,在许多情况下,这个子单元 R 是一个 rig 结构的(交换)乘法。如果 R 的可逆元素子对象有两个相连的成分,那么 R 可以说是双向的。在这种情况下,R 可以配备一个与 rig 结构兼容的前序。我们调整了合成微分几何 "井适应 "模型的构造,以建立具有双向 R 的第一个预内聚拓扑。我们还证明,在其中一个预内聚变体中,从双向性根本上合成导出的 R 上的前序与原始模型中定义的前序重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-directional models of `radically synthetic' differential geometry
The radically synthetic foundation for smooth geometry formulated in [Law11] postulates a space T with the property that it has a unique point and, out of the monoid T^T of endomorphisms, it extracts a submonoid R which, in many cases, is the (commutative) multiplication of a rig structure. The rig R is said to be bi-directional if its subobject of invertible elements has two connected components. In this case, R may be equipped with a pre-order compatible with the rig structure. We adjust the construction of `well-adapted' models of Synthetic Differential Geometry in order to build the first pre-cohesive toposes with a bi-directional R. We also show that, in one of these pre-cohesive variants, the pre-order on R, derived radically synthetically from bi-directionality, coincides with that defined in the original model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信