三分之二幂律源于高阶派生作用

N. Boulanger, F. Buisseret, F. Dierick, O. White
{"title":"三分之二幂律源于高阶派生作用","authors":"N. Boulanger, F. Buisseret, F. Dierick, O. White","doi":"arxiv-2405.15503","DOIUrl":null,"url":null,"abstract":"The two-thirds power law is a link between angular speed $\\omega$ and\ncurvature $\\kappa$ observed in voluntary human movements: $\\omega$ is\nproportional to $\\kappa^{2/3}$. Squared jerk is known to be a Lagrangian\nleading to the latter law. We propose that a broader class of higher-derivative\nLagrangians leads to the two-thirds power law and we perform the Hamiltonian\nanalysis leading to action-angle variables through Ostrogradski's procedure. In\nthis framework, squared jerk appears as an action variable and its minimization\nmay be related to power expenditure minimization during motion. The identified\nhigher-derivative Lagrangians are therefore natural candidates for cost\nfunctions, i.e. movement functions that are targeted to be minimal when one\nindividual performs a voluntary movement.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"223 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The two-thirds power law derived from an higher-derivative action\",\"authors\":\"N. Boulanger, F. Buisseret, F. Dierick, O. White\",\"doi\":\"arxiv-2405.15503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-thirds power law is a link between angular speed $\\\\omega$ and\\ncurvature $\\\\kappa$ observed in voluntary human movements: $\\\\omega$ is\\nproportional to $\\\\kappa^{2/3}$. Squared jerk is known to be a Lagrangian\\nleading to the latter law. We propose that a broader class of higher-derivative\\nLagrangians leads to the two-thirds power law and we perform the Hamiltonian\\nanalysis leading to action-angle variables through Ostrogradski's procedure. In\\nthis framework, squared jerk appears as an action variable and its minimization\\nmay be related to power expenditure minimization during motion. The identified\\nhigher-derivative Lagrangians are therefore natural candidates for cost\\nfunctions, i.e. movement functions that are targeted to be minimal when one\\nindividual performs a voluntary movement.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"223 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三分之二幂律是在人类自主运动中观察到的角速度 $\omega$ 和曲率 $\kappa$ 之间的联系:$\omega$ 与 $\kappa^{2/3}$ 成正比。众所周知,抽动平方是导致后一定律的拉格朗日。我们提出了一类更广泛的高阶衍生拉格朗日导致三分之二幂律,并通过奥斯特罗格拉兹基程序进行哈密顿分析,从而得出动作角度变量。在这一框架中,挺举平方作为动作变量出现,其最小化可能与运动过程中的动力消耗最小化有关。因此,确定的较高派生拉格朗日是成本函数的自然候选者,即在一个人进行自主运动时以最小化为目标的运动函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The two-thirds power law derived from an higher-derivative action
The two-thirds power law is a link between angular speed $\omega$ and curvature $\kappa$ observed in voluntary human movements: $\omega$ is proportional to $\kappa^{2/3}$. Squared jerk is known to be a Lagrangian leading to the latter law. We propose that a broader class of higher-derivative Lagrangians leads to the two-thirds power law and we perform the Hamiltonian analysis leading to action-angle variables through Ostrogradski's procedure. In this framework, squared jerk appears as an action variable and its minimization may be related to power expenditure minimization during motion. The identified higher-derivative Lagrangians are therefore natural candidates for cost functions, i.e. movement functions that are targeted to be minimal when one individual performs a voluntary movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信