(LF) 和 (PLB) 序列空间中广义塞萨罗算子的谱和动力学

IF 0.8 3区 数学 Q2 MATHEMATICS
Angela A. Albanese, Vicente Asensio
{"title":"(LF) 和 (PLB) 序列空间中广义塞萨罗算子的谱和动力学","authors":"Angela A. Albanese, Vicente Asensio","doi":"10.1007/s11117-024-01060-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce inductive limits of the Fréchet spaces <span>\\(\\ell (p+)\\)</span>, <span>\\(\\text {ces}(p+)\\)</span>, and <span>\\(d(p+)\\)</span> (<span>\\(1 \\le p &lt; \\infty \\)</span>) and projective limits of the (LB)-spaces <span>\\(\\ell (p-)\\)</span>, <span>\\(\\text {ces}(p-)\\)</span>, and <span>\\(d(p-)\\)</span> (<span>\\(1 &lt; p \\le \\infty \\)</span>). After having established some topological properties of such spaces as acyclicity and ultrabornologicity, we prove that the generalized Cesàro operators <span>\\(C_t\\)</span> (<span>\\(0 \\le t \\le 1\\)</span>) act continuously in these sequence spaces, and we determine the spectra. Finally, we study the ergodic properties, that is, power boundedness, (uniform) mean ergodicity, and supercyclicity, of the operators <span>\\(C_t\\)</span> acting in the (LF)-spaces and in the (PLB)-spaces mentioned above.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectra and dynamics of generalized Cesàro operators in (LF) and (PLB) sequence spaces\",\"authors\":\"Angela A. Albanese, Vicente Asensio\",\"doi\":\"10.1007/s11117-024-01060-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce inductive limits of the Fréchet spaces <span>\\\\(\\\\ell (p+)\\\\)</span>, <span>\\\\(\\\\text {ces}(p+)\\\\)</span>, and <span>\\\\(d(p+)\\\\)</span> (<span>\\\\(1 \\\\le p &lt; \\\\infty \\\\)</span>) and projective limits of the (LB)-spaces <span>\\\\(\\\\ell (p-)\\\\)</span>, <span>\\\\(\\\\text {ces}(p-)\\\\)</span>, and <span>\\\\(d(p-)\\\\)</span> (<span>\\\\(1 &lt; p \\\\le \\\\infty \\\\)</span>). After having established some topological properties of such spaces as acyclicity and ultrabornologicity, we prove that the generalized Cesàro operators <span>\\\\(C_t\\\\)</span> (<span>\\\\(0 \\\\le t \\\\le 1\\\\)</span>) act continuously in these sequence spaces, and we determine the spectra. Finally, we study the ergodic properties, that is, power boundedness, (uniform) mean ergodicity, and supercyclicity, of the operators <span>\\\\(C_t\\\\)</span> acting in the (LF)-spaces and in the (PLB)-spaces mentioned above.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01060-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01060-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了弗雷谢特空间(\ell (p+))、(text {ces}(p+))和(d(p+))的归纳极限(\(1 \le p <;\和(LB)空间的投影极限(\ell (p-)\), \(\text {ces}(p-)\), and\(d(p-)\) (\(1 < p \le \infty \))。在确定了这些空间的一些拓扑性质(如非循环性和超角性)之后,我们证明广义的 Cesàro 算子 \(C_t\) (\(0 \le t \le 1\)) 连续作用于这些序列空间,并确定了它们的谱。最后,我们研究了在上述(LF)空间和(PLB)空间中作用的算子(C_t\ )的遍历性质,即幂有界性、(均匀)平均遍历性和超周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectra and dynamics of generalized Cesàro operators in (LF) and (PLB) sequence spaces

In this paper, we introduce inductive limits of the Fréchet spaces \(\ell (p+)\), \(\text {ces}(p+)\), and \(d(p+)\) (\(1 \le p < \infty \)) and projective limits of the (LB)-spaces \(\ell (p-)\), \(\text {ces}(p-)\), and \(d(p-)\) (\(1 < p \le \infty \)). After having established some topological properties of such spaces as acyclicity and ultrabornologicity, we prove that the generalized Cesàro operators \(C_t\) (\(0 \le t \le 1\)) act continuously in these sequence spaces, and we determine the spectra. Finally, we study the ergodic properties, that is, power boundedness, (uniform) mean ergodicity, and supercyclicity, of the operators \(C_t\) acting in the (LF)-spaces and in the (PLB)-spaces mentioned above.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信