具有非局部扰动的 HLS 下临界 Choquard 方程的 $$L^2$$ 归一化驻波解的存在性和渐近行为

IF 1.9 3区 数学 Q1 MATHEMATICS
Zi-Heng Zhang, Jian-Lun Liu, Hong-Rui Sun
{"title":"具有非局部扰动的 HLS 下临界 Choquard 方程的 $$L^2$$ 归一化驻波解的存在性和渐近行为","authors":"Zi-Heng Zhang, Jian-Lun Liu, Hong-Rui Sun","doi":"10.1007/s12346-024-01060-6","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the following HLS lower critical Choquard equation with a nonlocal perturbation </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -{\\Delta }u-\\bigg (I_\\alpha *\\bigg [h|u|^\\frac{N+\\alpha }{N}\\bigg ]\\bigg )h|u|^{\\frac{N+\\alpha }{N}-2}u-\\mu (I_\\alpha *|u|^q)|u|^{q-2}u=\\lambda u\\ \\ \\text{ in }\\ {\\mathbb {R}}^N, \\\\ \\int _{{\\mathbb {R}}^N} u^2 dx = c, \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(\\alpha \\in (0,N)\\)</span>, <span>\\(N \\ge 3\\)</span>, <span>\\(\\mu , c&gt;0\\)</span>, <span>\\(\\frac{N+\\alpha }{N}&lt;q&lt;\\frac{N+\\alpha +2}{N}\\)</span>, <span>\\(\\lambda \\in {\\mathbb {R}}\\)</span> is an unknown Lagrange multiplier and <span>\\(h:{\\mathbb {R}}^N\\rightarrow (0,\\infty )\\)</span> is a continuous function. The novelty of this paper is that we not only investigate autonomous case but also handle nonautonomous situation for the above problem. For both cases, we prove the existence and discuss asymptotic behavior of ground state normalized solutions. Compared with the existing references, we extend the recent results obtained by Ye et al. (J Geom Anal 32:242, 2022) to the HLS lower critical case.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Asymptotical Behavior of $$L^2$$ -Normalized Standing Wave Solutions to HLS Lower Critical Choquard Equation with a Nonlocal Perturbation\",\"authors\":\"Zi-Heng Zhang, Jian-Lun Liu, Hong-Rui Sun\",\"doi\":\"10.1007/s12346-024-01060-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the following HLS lower critical Choquard equation with a nonlocal perturbation </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} -{\\\\Delta }u-\\\\bigg (I_\\\\alpha *\\\\bigg [h|u|^\\\\frac{N+\\\\alpha }{N}\\\\bigg ]\\\\bigg )h|u|^{\\\\frac{N+\\\\alpha }{N}-2}u-\\\\mu (I_\\\\alpha *|u|^q)|u|^{q-2}u=\\\\lambda u\\\\ \\\\ \\\\text{ in }\\\\ {\\\\mathbb {R}}^N, \\\\\\\\ \\\\int _{{\\\\mathbb {R}}^N} u^2 dx = c, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\alpha \\\\in (0,N)\\\\)</span>, <span>\\\\(N \\\\ge 3\\\\)</span>, <span>\\\\(\\\\mu , c&gt;0\\\\)</span>, <span>\\\\(\\\\frac{N+\\\\alpha }{N}&lt;q&lt;\\\\frac{N+\\\\alpha +2}{N}\\\\)</span>, <span>\\\\(\\\\lambda \\\\in {\\\\mathbb {R}}\\\\)</span> is an unknown Lagrange multiplier and <span>\\\\(h:{\\\\mathbb {R}}^N\\\\rightarrow (0,\\\\infty )\\\\)</span> is a continuous function. The novelty of this paper is that we not only investigate autonomous case but also handle nonautonomous situation for the above problem. For both cases, we prove the existence and discuss asymptotic behavior of ground state normalized solutions. Compared with the existing references, we extend the recent results obtained by Ye et al. (J Geom Anal 32:242, 2022) to the HLS lower critical case.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01060-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01060-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注以下具有非局部扰动的 HLS 下临界 Choquard 方程 $$\begin{aligned} {\left\{ \begin{array}{ll} -{{Delta }u-\bigg (I_\alpha *\bigg [h|u|^\frac{N+\alpha }{N}\bigg ]h|u|^{frac{N+\alpha }{N}-2}u-\mu (I_\alpha *|u|^q)|u|^{q-2}u=\lambda u\ \text{ in }\ {\mathbb {R}}^N、\\ u^2 dx = c, end{array}\right.}\end{aligned}$where \(\alpha \in (0,N)\),\(N \ge 3\),\(\mu , c>0\),\(\frac{N+\alpha }{N}<;q<\frac{N+\alpha +2}{N}\), (\(\lambda \in {\mathbb {R}}\) 是一个未知的拉格朗日乘数并且(h:(0,\infty )\) 是一个连续函数。本文的新颖之处在于,我们不仅研究了自主情况,还处理了上述问题的非自主情况。对于这两种情况,我们都证明了地面状态归一化解的存在并讨论了其渐近行为。与现有参考文献相比,我们将 Ye 等人的最新成果(J Geom Anal 32:242, 2022)扩展到了 HLS 下临界情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Asymptotical Behavior of $$L^2$$ -Normalized Standing Wave Solutions to HLS Lower Critical Choquard Equation with a Nonlocal Perturbation

This paper is concerned with the following HLS lower critical Choquard equation with a nonlocal perturbation

$$\begin{aligned} {\left\{ \begin{array}{ll} -{\Delta }u-\bigg (I_\alpha *\bigg [h|u|^\frac{N+\alpha }{N}\bigg ]\bigg )h|u|^{\frac{N+\alpha }{N}-2}u-\mu (I_\alpha *|u|^q)|u|^{q-2}u=\lambda u\ \ \text{ in }\ {\mathbb {R}}^N, \\ \int _{{\mathbb {R}}^N} u^2 dx = c, \end{array}\right. } \end{aligned}$$

where \(\alpha \in (0,N)\), \(N \ge 3\), \(\mu , c>0\), \(\frac{N+\alpha }{N}<q<\frac{N+\alpha +2}{N}\), \(\lambda \in {\mathbb {R}}\) is an unknown Lagrange multiplier and \(h:{\mathbb {R}}^N\rightarrow (0,\infty )\) is a continuous function. The novelty of this paper is that we not only investigate autonomous case but also handle nonautonomous situation for the above problem. For both cases, we prove the existence and discuss asymptotic behavior of ground state normalized solutions. Compared with the existing references, we extend the recent results obtained by Ye et al. (J Geom Anal 32:242, 2022) to the HLS lower critical case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信