不完全黎曼流形上薛定谔算子的 L p 正保留性和自相接性

IF 1.3 3区 数学 Q1 MATHEMATICS
Andrea Bisterzo, Giona Veronelli
{"title":"不完全黎曼流形上薛定谔算子的 L p 正保留性和自相接性","authors":"Andrea Bisterzo, Giona Veronelli","doi":"10.1017/prm.2024.64","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to prove a qualitative property, namely the <jats:italic>preservation of positivity</jats:italic>, for Schrödinger-type operators acting on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000647_inline2.png\"/> </jats:alternatives> </jats:inline-formula> functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p\\neq 2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000647_inline3.png\"/> </jats:alternatives> </jats:inline-formula>, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000647_inline4.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"48 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L p positivity preservation and self-adjointness of Schrödinger operators on incomplete Riemannian manifolds\",\"authors\":\"Andrea Bisterzo, Giona Veronelli\",\"doi\":\"10.1017/prm.2024.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to prove a qualitative property, namely the <jats:italic>preservation of positivity</jats:italic>, for Schrödinger-type operators acting on <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000647_inline2.png\\\"/> </jats:alternatives> </jats:inline-formula> functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p\\\\neq 2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000647_inline3.png\\\"/> </jats:alternatives> </jats:inline-formula>, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000647_inline4.png\\\"/> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.64\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.64","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明作用于定义在(可能不完全)黎曼流形上的 $L^p$ 函数的薛定谔型算子的一个定性属性,即正性的保持。一个关键假设是控制流形考奇边界附近算子势的行为。作为副产品,我们建立了此类算子的基本自相接性,以及将其推广到 $p\neq 2$ 的情况,即平滑紧凑支撑函数是薛定谔算子在 $L^p$ 中的算子核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L p positivity preservation and self-adjointness of Schrödinger operators on incomplete Riemannian manifolds
The aim of this paper is to prove a qualitative property, namely the preservation of positivity, for Schrödinger-type operators acting on $L^p$ functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case $p\neq 2$ , i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in $L^p$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信