解开气候的复杂性:方法论启示

Alka Yadav, Sourish Das, Anirban Chakraborti
{"title":"解开气候的复杂性:方法论启示","authors":"Alka Yadav, Sourish Das, Anirban Chakraborti","doi":"arxiv-2405.18391","DOIUrl":null,"url":null,"abstract":"In this article, we review the interdisciplinary techniques (borrowed from\nphysics, mathematics, statistics, machine-learning, etc.) and methodological\nframework that we have used to understand climate systems, which serve as\nexamples of \"complex systems\". We believe that this would offer valuable\ninsights to comprehend the complexity of climate variability and pave the way\nfor drafting policies for action against climate change, etc. Our basic aim is\nto analyse time-series data structures across diverse climate parameters,\nextract Fourier-transformed features to recognize and model the\ntrends/seasonalities in the climate variables using standard methods like\ndetrended residual series analyses, correlation structures among climate\nparameters, Granger causal models, and other statistical machine-learning\ntechniques. We cite and briefly explain two case studies: (i) the relationship\nbetween the Standardised Precipitation Index (SPI) and specific climate\nvariables including Sea Surface Temperature (SST), El Ni\\~no Southern\nOscillation (ENSO), and Indian Ocean Dipole (IOD), uncovering temporal shifts\nin correlations between SPI and these variables, and reveal complex patterns\nthat drive drought and wet climate conditions in South-West Australia; (ii) the\ncomplex interactions of North Atlantic Oscillation (NAO) index, with SST and\nsea ice extent (SIE), potentially arising from positive feedback loops.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untangling Climate's Complexity: Methodological Insights\",\"authors\":\"Alka Yadav, Sourish Das, Anirban Chakraborti\",\"doi\":\"arxiv-2405.18391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we review the interdisciplinary techniques (borrowed from\\nphysics, mathematics, statistics, machine-learning, etc.) and methodological\\nframework that we have used to understand climate systems, which serve as\\nexamples of \\\"complex systems\\\". We believe that this would offer valuable\\ninsights to comprehend the complexity of climate variability and pave the way\\nfor drafting policies for action against climate change, etc. Our basic aim is\\nto analyse time-series data structures across diverse climate parameters,\\nextract Fourier-transformed features to recognize and model the\\ntrends/seasonalities in the climate variables using standard methods like\\ndetrended residual series analyses, correlation structures among climate\\nparameters, Granger causal models, and other statistical machine-learning\\ntechniques. We cite and briefly explain two case studies: (i) the relationship\\nbetween the Standardised Precipitation Index (SPI) and specific climate\\nvariables including Sea Surface Temperature (SST), El Ni\\\\~no Southern\\nOscillation (ENSO), and Indian Ocean Dipole (IOD), uncovering temporal shifts\\nin correlations between SPI and these variables, and reveal complex patterns\\nthat drive drought and wet climate conditions in South-West Australia; (ii) the\\ncomplex interactions of North Atlantic Oscillation (NAO) index, with SST and\\nsea ice extent (SIE), potentially arising from positive feedback loops.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们回顾了为理解作为 "复杂系统 "范例的气候系统而采用的跨学科技术(借鉴物理学、数学、统计学、机器学习等)和方法论框架。我们相信,这将为理解气候变异的复杂性提供有价值的见解,并为起草应对气候变化的行动政策等铺平道路。我们的基本目标是分析不同气候参数的时间序列数据结构,提取傅立叶变换特征,利用趋势残差序列分析、气候参数之间的相关结构、格兰杰因果模型和其他统计机器学习技术等标准方法识别气候变量的趋势/季节性并建立模型。我们引用并简要说明了两个案例研究:(i) 标准化降水指数(SPI)与特定气候变量(包括海面温度(SST)、厄尔尼诺/南方涛动(ENSO)和印度洋偶极子(IOD))之间的关系,揭示了 SPI 与这些变量之间相关性的时间变化,并揭示了驱动澳大利亚西南部干旱和潮湿气候条件的复杂模式;(ii) 北大西洋涛动(NAO)指数与海温和海冰范围(SIE)之间的复杂互动,这 可能是正反馈回路引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Untangling Climate's Complexity: Methodological Insights
In this article, we review the interdisciplinary techniques (borrowed from physics, mathematics, statistics, machine-learning, etc.) and methodological framework that we have used to understand climate systems, which serve as examples of "complex systems". We believe that this would offer valuable insights to comprehend the complexity of climate variability and pave the way for drafting policies for action against climate change, etc. Our basic aim is to analyse time-series data structures across diverse climate parameters, extract Fourier-transformed features to recognize and model the trends/seasonalities in the climate variables using standard methods like detrended residual series analyses, correlation structures among climate parameters, Granger causal models, and other statistical machine-learning techniques. We cite and briefly explain two case studies: (i) the relationship between the Standardised Precipitation Index (SPI) and specific climate variables including Sea Surface Temperature (SST), El Ni\~no Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD), uncovering temporal shifts in correlations between SPI and these variables, and reveal complex patterns that drive drought and wet climate conditions in South-West Australia; (ii) the complex interactions of North Atlantic Oscillation (NAO) index, with SST and sea ice extent (SIE), potentially arising from positive feedback loops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信