科特-波赫纳空间的侧序和正交相加算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Marat Pliev, Nariman Abasov, Nonna Dzhusoeva
{"title":"科特-波赫纳空间的侧序和正交相加算子","authors":"Marat Pliev,&nbsp;Nariman Abasov,&nbsp;Nonna Dzhusoeva","doi":"10.1007/s43034-024-00360-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a new class of regular orthogonally additive operators defined on a lattice-normed space <span>\\((\\mathcal {X},E)\\)</span> and taking values in a vector lattice <i>F</i>. We show that the vector space <span>\\(\\mathcal{O}\\mathcal{A}_r(\\mathcal {X},F)\\)</span> of all regular orthogonally additive operators from a <i>d</i>-decomposable lattice-normed space <span>\\((\\mathcal {X},E)\\)</span> to a Dedekind complete vector lattice <i>F</i> is a Dedekind complete vector lattice and the lattice operations can be calculated by the Riesz–Kantorovich formulas. We find necessary and sufficient conditions for an orthogonally additive operator <span>\\(T:\\mathcal {X}\\rightarrow F\\)</span> to be dominated and obtain a criterion of the positivity of a nonlinear superposition operator <span>\\(T_N:E(X)\\rightarrow E\\)</span> defined on Köthe–Bochner space <i>E</i>(<i>X</i>) and taking values in Köthe-*Banach space <i>E</i>. Finally, we state some open problems.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The lateral order on Köthe–Bochner spaces and orthogonally additive operators\",\"authors\":\"Marat Pliev,&nbsp;Nariman Abasov,&nbsp;Nonna Dzhusoeva\",\"doi\":\"10.1007/s43034-024-00360-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a new class of regular orthogonally additive operators defined on a lattice-normed space <span>\\\\((\\\\mathcal {X},E)\\\\)</span> and taking values in a vector lattice <i>F</i>. We show that the vector space <span>\\\\(\\\\mathcal{O}\\\\mathcal{A}_r(\\\\mathcal {X},F)\\\\)</span> of all regular orthogonally additive operators from a <i>d</i>-decomposable lattice-normed space <span>\\\\((\\\\mathcal {X},E)\\\\)</span> to a Dedekind complete vector lattice <i>F</i> is a Dedekind complete vector lattice and the lattice operations can be calculated by the Riesz–Kantorovich formulas. We find necessary and sufficient conditions for an orthogonally additive operator <span>\\\\(T:\\\\mathcal {X}\\\\rightarrow F\\\\)</span> to be dominated and obtain a criterion of the positivity of a nonlinear superposition operator <span>\\\\(T_N:E(X)\\\\rightarrow E\\\\)</span> defined on Köthe–Bochner space <i>E</i>(<i>X</i>) and taking values in Köthe-*Banach space <i>E</i>. Finally, we state some open problems.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00360-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00360-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一类新的正交相加算子,它们定义在网格规范空间 \((\mathcal {X},E)\) 上,并在向量网格 F 中取值。我们证明了从可分解的网格规范空间 \((\mathcal {X},E)\) 到一个 Deconded 空间的所有正交相加算子的向量空间 \(\mathcal{O}\mathcal{A}_r(\mathcal {X},F)\) 、E)\) 到一个戴德金完全向量网格 F 是一个戴德金完全向量网格,网格运算可以通过里兹-康托洛维奇公式计算。我们找到了一个正交相加算子 \(T:\mathcal {X}\rightarrow F\) 被支配的必要条件和充分条件,并得到了一个定义在 Köthe-Bochner 空间 E(X) 上并在 Köthe-*Banach 空间 E 中取值的非线性叠加算子 \(T_N:E(X)\rightarrow E\) 的实在性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The lateral order on Köthe–Bochner spaces and orthogonally additive operators

In this paper, we introduce a new class of regular orthogonally additive operators defined on a lattice-normed space \((\mathcal {X},E)\) and taking values in a vector lattice F. We show that the vector space \(\mathcal{O}\mathcal{A}_r(\mathcal {X},F)\) of all regular orthogonally additive operators from a d-decomposable lattice-normed space \((\mathcal {X},E)\) to a Dedekind complete vector lattice F is a Dedekind complete vector lattice and the lattice operations can be calculated by the Riesz–Kantorovich formulas. We find necessary and sufficient conditions for an orthogonally additive operator \(T:\mathcal {X}\rightarrow F\) to be dominated and obtain a criterion of the positivity of a nonlinear superposition operator \(T_N:E(X)\rightarrow E\) defined on Köthe–Bochner space E(X) and taking values in Köthe-*Banach space E. Finally, we state some open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信