半同步联合学习中不同聚合方案的实验研究

Yunbo Li, Jiaping Gui, Yue Wu
{"title":"半同步联合学习中不同聚合方案的实验研究","authors":"Yunbo Li, Jiaping Gui, Yue Wu","doi":"arxiv-2405.16086","DOIUrl":null,"url":null,"abstract":"Federated learning is highly valued due to its high-performance computing in\ndistributed environments while safeguarding data privacy. To address resource\nheterogeneity, researchers have proposed a semi-asynchronous federated learning\n(SAFL) architecture. However, the performance gap between different aggregation\ntargets in SAFL remain unexplored. In this paper, we systematically compare the performance between two\nalgorithm modes, FedSGD and FedAvg that correspond to aggregating gradients and\nmodels, respectively. Our results across various task scenarios indicate these\ntwo modes exhibit a substantial performance gap. Specifically, FedSGD achieves\nhigher accuracy and faster convergence but experiences more severe fluctuates\nin accuracy, whereas FedAvg excels in handling straggler issues but converges\nslower with reduced accuracy.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Different Aggregation Schemes in Semi-Asynchronous Federated Learning\",\"authors\":\"Yunbo Li, Jiaping Gui, Yue Wu\",\"doi\":\"arxiv-2405.16086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning is highly valued due to its high-performance computing in\\ndistributed environments while safeguarding data privacy. To address resource\\nheterogeneity, researchers have proposed a semi-asynchronous federated learning\\n(SAFL) architecture. However, the performance gap between different aggregation\\ntargets in SAFL remain unexplored. In this paper, we systematically compare the performance between two\\nalgorithm modes, FedSGD and FedAvg that correspond to aggregating gradients and\\nmodels, respectively. Our results across various task scenarios indicate these\\ntwo modes exhibit a substantial performance gap. Specifically, FedSGD achieves\\nhigher accuracy and faster convergence but experiences more severe fluctuates\\nin accuracy, whereas FedAvg excels in handling straggler issues but converges\\nslower with reduced accuracy.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.16086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.16086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联盟学习因其在分布式环境中的高性能计算而备受推崇,同时还能保护数据隐私。为了解决资源异构问题,研究人员提出了半异步联合学习(SAFL)架构。然而,SAFL 中不同聚合目标之间的性能差距仍未得到探索。在本文中,我们系统地比较了 FedSGD 和 FedAvg 这两种算法模式的性能,它们分别对应于聚合梯度和模型。我们在各种任务场景下得出的结果表明,这两种模式在性能上存在很大差距。具体来说,FedSGD 实现了更高的精度和更快的收敛速度,但精度波动更为剧烈;而 FedAvg 在处理杂散问题方面表现出色,但收敛速度较慢,精度也有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Different Aggregation Schemes in Semi-Asynchronous Federated Learning
Federated learning is highly valued due to its high-performance computing in distributed environments while safeguarding data privacy. To address resource heterogeneity, researchers have proposed a semi-asynchronous federated learning (SAFL) architecture. However, the performance gap between different aggregation targets in SAFL remain unexplored. In this paper, we systematically compare the performance between two algorithm modes, FedSGD and FedAvg that correspond to aggregating gradients and models, respectively. Our results across various task scenarios indicate these two modes exhibit a substantial performance gap. Specifically, FedSGD achieves higher accuracy and faster convergence but experiences more severe fluctuates in accuracy, whereas FedAvg excels in handling straggler issues but converges slower with reduced accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信