{"title":"具有临界贝里斯基-狮子非线性的准线性薛定谔方程的基态解","authors":"Jian-Xin Han, Ming-Chao Chen, Yan-Fang Xue","doi":"10.1007/s10986-024-09635-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the quasilinear Schrödinger equation involving a general nonlinearity at critical growth. By using Jeanjean’s monotonicity trick and the Pohozaev identity we get the existence results that generalize an earlier work [H. Liu and L. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, <i>Commun. Pure Appl. Anal.</i>, 19(6):3429–3444, 2020] about the subcritical case to the critical case.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for quasilinear Schrödinger equations with critical Berestycki–Lions nonlinearities\",\"authors\":\"Jian-Xin Han, Ming-Chao Chen, Yan-Fang Xue\",\"doi\":\"10.1007/s10986-024-09635-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the quasilinear Schrödinger equation involving a general nonlinearity at critical growth. By using Jeanjean’s monotonicity trick and the Pohozaev identity we get the existence results that generalize an earlier work [H. Liu and L. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, <i>Commun. Pure Appl. Anal.</i>, 19(6):3429–3444, 2020] about the subcritical case to the critical case.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09635-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09635-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是涉及临界增长时一般非线性的准线性薛定谔方程。通过使用 Jeanjean 的单调性技巧和 Pohozaev 特性,我们得到了存在性结果,这些结果概括了早先的工作 [H. Liu and L. Zhao, Existence results for quasilinear Schrödinger equations with general nonlinearity at the critical growth]。Liu and L. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, Commun. Pure Appl.纯应用分析,19(6):3429-3444, 2020]有关亚临界情况到临界情况的存在性结果。
Ground state solutions for quasilinear Schrödinger equations with critical Berestycki–Lions nonlinearities
We consider the quasilinear Schrödinger equation involving a general nonlinearity at critical growth. By using Jeanjean’s monotonicity trick and the Pohozaev identity we get the existence results that generalize an earlier work [H. Liu and L. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, Commun. Pure Appl. Anal., 19(6):3429–3444, 2020] about the subcritical case to the critical case.