用于液位传感的长波导传感器中超声波传播的实验研究

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Abhishek Kumar, Suresh Periyannan
{"title":"用于液位传感的长波导传感器中超声波传播的实验研究","authors":"Abhishek Kumar,&nbsp;Suresh Periyannan","doi":"10.1134/S1061830923600880","DOIUrl":null,"url":null,"abstract":"<p>This work reports an ultrasonic long waveguide sensor for measuring the fluid level utilizing longitudinal <i>L</i>(0, 1), torsional <i>T</i>(0, 1), and flexural <i>F</i>(1, 1) wave modes. These wave modes were transmitted and received simultaneously using stainless-steel wire. A long waveguide (&gt;12 m) covers a broader region of interest and is suitable in the process industry’s hostile environment applications, “fluid levels and temperature measurements.” In this work, we used fluids “diesel, water, and glycerin” for measuring fluid levels based on the sensor’s reflection factors from time domain and frequency domain signals. We examined the impact of wave mode attenuation effects for long waveguide sensor design while changing the waveguide lengths. Initially, we obtained the <i>L</i>(0, 1) and <i>T</i>(0, 1) modes reflections from the 12.6 m waveguide length when one end of the long waveguide was fixed with a shear transducer at 45° orientation. Subsequently, we want to study and identify all wave modes (especially F mode) travel distances. Hence, we would like to investigate the guided wave propagation characteristics (attenuation, ultrasonic velocity, and frequency of all wave modes) in the long waveguide while cutting systematically at intervals of 1 m, starting from its original length of the waveguide 12.6 m by analyzing the A-scan signals of various lengths of a single waveguide. This simple and cost-effective technique can monitor the high fluid depths and temperature in power plants, oil, and petrochemical industries while designing a long waveguide sensor with appropriate ultrasonic parameters.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Ultrasonic Wave Propagation in a Long Waveguide Sensor for Fluid-Level Sensing\",\"authors\":\"Abhishek Kumar,&nbsp;Suresh Periyannan\",\"doi\":\"10.1134/S1061830923600880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work reports an ultrasonic long waveguide sensor for measuring the fluid level utilizing longitudinal <i>L</i>(0, 1), torsional <i>T</i>(0, 1), and flexural <i>F</i>(1, 1) wave modes. These wave modes were transmitted and received simultaneously using stainless-steel wire. A long waveguide (&gt;12 m) covers a broader region of interest and is suitable in the process industry’s hostile environment applications, “fluid levels and temperature measurements.” In this work, we used fluids “diesel, water, and glycerin” for measuring fluid levels based on the sensor’s reflection factors from time domain and frequency domain signals. We examined the impact of wave mode attenuation effects for long waveguide sensor design while changing the waveguide lengths. Initially, we obtained the <i>L</i>(0, 1) and <i>T</i>(0, 1) modes reflections from the 12.6 m waveguide length when one end of the long waveguide was fixed with a shear transducer at 45° orientation. Subsequently, we want to study and identify all wave modes (especially F mode) travel distances. Hence, we would like to investigate the guided wave propagation characteristics (attenuation, ultrasonic velocity, and frequency of all wave modes) in the long waveguide while cutting systematically at intervals of 1 m, starting from its original length of the waveguide 12.6 m by analyzing the A-scan signals of various lengths of a single waveguide. This simple and cost-effective technique can monitor the high fluid depths and temperature in power plants, oil, and petrochemical industries while designing a long waveguide sensor with appropriate ultrasonic parameters.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830923600880\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830923600880","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究报告介绍了一种利用纵波 L(0,1)、扭转波 T(0,1)和挠曲波 F(1,1)模式测量液位的超声波长波导传感器。这些波模式通过不锈钢丝同时发射和接收。长波导(>12 米)可覆盖更广的感兴趣区域,适用于加工业的恶劣环境应用,即 "液位和温度测量"。在这项工作中,我们使用了 "柴油、水和甘油 "等液体,根据传感器对时域和频域信号的反射系数来测量液位。在改变波导长度的同时,我们研究了波模衰减效应对长波导传感器设计的影响。最初,当长波导的一端与剪切传感器呈 45° 固定时,我们从 12.6 米长的波导中获得了 L(0,1)和 T(0,1)模式的反射。随后,我们希望研究并确定所有波模(尤其是 F 模)的传播距离。因此,我们希望通过分析单根波导不同长度的 A-scan 信号,研究长波导中的导波传播特性(衰减、超声波速度和所有波模的频率),同时从波导的原始长度 12.6 米开始,每隔 1 米系统地切割一次。这种简单而经济的技术可以监测发电厂、石油和石化工业中的高流体深度和温度,同时设计出具有适当超声参数的长波导传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Study of Ultrasonic Wave Propagation in a Long Waveguide Sensor for Fluid-Level Sensing

Experimental Study of Ultrasonic Wave Propagation in a Long Waveguide Sensor for Fluid-Level Sensing

Experimental Study of Ultrasonic Wave Propagation in a Long Waveguide Sensor for Fluid-Level Sensing

This work reports an ultrasonic long waveguide sensor for measuring the fluid level utilizing longitudinal L(0, 1), torsional T(0, 1), and flexural F(1, 1) wave modes. These wave modes were transmitted and received simultaneously using stainless-steel wire. A long waveguide (>12 m) covers a broader region of interest and is suitable in the process industry’s hostile environment applications, “fluid levels and temperature measurements.” In this work, we used fluids “diesel, water, and glycerin” for measuring fluid levels based on the sensor’s reflection factors from time domain and frequency domain signals. We examined the impact of wave mode attenuation effects for long waveguide sensor design while changing the waveguide lengths. Initially, we obtained the L(0, 1) and T(0, 1) modes reflections from the 12.6 m waveguide length when one end of the long waveguide was fixed with a shear transducer at 45° orientation. Subsequently, we want to study and identify all wave modes (especially F mode) travel distances. Hence, we would like to investigate the guided wave propagation characteristics (attenuation, ultrasonic velocity, and frequency of all wave modes) in the long waveguide while cutting systematically at intervals of 1 m, starting from its original length of the waveguide 12.6 m by analyzing the A-scan signals of various lengths of a single waveguide. This simple and cost-effective technique can monitor the high fluid depths and temperature in power plants, oil, and petrochemical industries while designing a long waveguide sensor with appropriate ultrasonic parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信