几何交点图中最密集子图的逼近

Sariel Har-Peled, Rahul Saladi
{"title":"几何交点图中最密集子图的逼近","authors":"Sariel Har-Peled, Rahul Saladi","doi":"arxiv-2405.18337","DOIUrl":null,"url":null,"abstract":"$ \\newcommand{\\cardin}[1]{\\left| {#1} \\right|}%\n\\newcommand{\\Graph}{\\Mh{\\mathsf{G}}}% \\providecommand{\\G}{\\Graph}%\n\\renewcommand{\\G}{\\Graph}% \\providecommand{\\GA}{\\Mh{H}}%\n\\renewcommand{\\GA}{\\Mh{H}}% \\newcommand{\\VV}{\\Mh{\\mathsf{V}}}%\n\\newcommand{\\VX}[1]{\\VV\\pth{#1}}% \\providecommand{\\EE}{\\Mh{\\mathsf{E}}}%\n\\renewcommand{\\EE}{\\Mh{\\mathsf{E}}}% \\newcommand{\\Re}{\\mathbb{R}}\n\\newcommand{\\reals}{\\mathbb{R}} \\newcommand{\\SetX}{\\mathsf{X}}\n\\newcommand{\\rad}{r} \\newcommand{\\Mh}[1]{#1} \\newcommand{\\query}{q}\n\\newcommand{\\eps}{\\varepsilon} \\newcommand{\\VorX}[1]{\\mathcal{V} \\pth{#1}}\n\\newcommand{\\Polygon}{\\mathsf{P}} \\newcommand{\\IntRange}[1]{[ #1 ]}\n\\newcommand{\\Space}{\\overline{\\mathsf{m}}}\n\\newcommand{\\pth}[2][\\!]{#1\\left({#2}\\right)}\n\\newcommand{\\polylog}{\\mathrm{polylog}} \\newcommand{\\N}{\\mathbb N}\n\\newcommand{\\Z}{\\mathbb Z} \\newcommand{\\pt}{p} \\newcommand{\\distY}[2]{\\left\\|\n{#1} - {#2} \\right\\|} \\newcommand{\\ptq}{q} \\newcommand{\\pts}{s}$ For an\nundirected graph $\\mathsf{G}=(\\mathsf{V}, \\mathsf{E})$, with $n$ vertices and\n$m$ edges, the \\emph{densest subgraph} problem, is to compute a subset $S\n\\subseteq \\mathsf{V}$ which maximizes the ratio $|\\mathsf{E}_S| / |S|$, where\n$\\mathsf{E}_S \\subseteq \\mathsf{E}$ is the set of all edges of $\\mathsf{G}$\nwith endpoints in $S$. The densest subgraph problem is a well studied problem\nin computer science. Existing exact and approximation algorithms for computing\nthe densest subgraph require $\\Omega(m)$ time. We present near-linear time (in\n$n$) approximation algorithms for the densest subgraph problem on\n\\emph{implicit} geometric intersection graphs, where the vertices are\nexplicitly given but not the edges. As a concrete example, we consider $n$\ndisks in the plane with arbitrary radii and present two different approximation\nalgorithms.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Densest Subgraph in Geometric Intersection Graphs\",\"authors\":\"Sariel Har-Peled, Rahul Saladi\",\"doi\":\"arxiv-2405.18337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$ \\\\newcommand{\\\\cardin}[1]{\\\\left| {#1} \\\\right|}%\\n\\\\newcommand{\\\\Graph}{\\\\Mh{\\\\mathsf{G}}}% \\\\providecommand{\\\\G}{\\\\Graph}%\\n\\\\renewcommand{\\\\G}{\\\\Graph}% \\\\providecommand{\\\\GA}{\\\\Mh{H}}%\\n\\\\renewcommand{\\\\GA}{\\\\Mh{H}}% \\\\newcommand{\\\\VV}{\\\\Mh{\\\\mathsf{V}}}%\\n\\\\newcommand{\\\\VX}[1]{\\\\VV\\\\pth{#1}}% \\\\providecommand{\\\\EE}{\\\\Mh{\\\\mathsf{E}}}%\\n\\\\renewcommand{\\\\EE}{\\\\Mh{\\\\mathsf{E}}}% \\\\newcommand{\\\\Re}{\\\\mathbb{R}}\\n\\\\newcommand{\\\\reals}{\\\\mathbb{R}} \\\\newcommand{\\\\SetX}{\\\\mathsf{X}}\\n\\\\newcommand{\\\\rad}{r} \\\\newcommand{\\\\Mh}[1]{#1} \\\\newcommand{\\\\query}{q}\\n\\\\newcommand{\\\\eps}{\\\\varepsilon} \\\\newcommand{\\\\VorX}[1]{\\\\mathcal{V} \\\\pth{#1}}\\n\\\\newcommand{\\\\Polygon}{\\\\mathsf{P}} \\\\newcommand{\\\\IntRange}[1]{[ #1 ]}\\n\\\\newcommand{\\\\Space}{\\\\overline{\\\\mathsf{m}}}\\n\\\\newcommand{\\\\pth}[2][\\\\!]{#1\\\\left({#2}\\\\right)}\\n\\\\newcommand{\\\\polylog}{\\\\mathrm{polylog}} \\\\newcommand{\\\\N}{\\\\mathbb N}\\n\\\\newcommand{\\\\Z}{\\\\mathbb Z} \\\\newcommand{\\\\pt}{p} \\\\newcommand{\\\\distY}[2]{\\\\left\\\\|\\n{#1} - {#2} \\\\right\\\\|} \\\\newcommand{\\\\ptq}{q} \\\\newcommand{\\\\pts}{s}$ For an\\nundirected graph $\\\\mathsf{G}=(\\\\mathsf{V}, \\\\mathsf{E})$, with $n$ vertices and\\n$m$ edges, the \\\\emph{densest subgraph} problem, is to compute a subset $S\\n\\\\subseteq \\\\mathsf{V}$ which maximizes the ratio $|\\\\mathsf{E}_S| / |S|$, where\\n$\\\\mathsf{E}_S \\\\subseteq \\\\mathsf{E}$ is the set of all edges of $\\\\mathsf{G}$\\nwith endpoints in $S$. The densest subgraph problem is a well studied problem\\nin computer science. Existing exact and approximation algorithms for computing\\nthe densest subgraph require $\\\\Omega(m)$ time. We present near-linear time (in\\n$n$) approximation algorithms for the densest subgraph problem on\\n\\\\emph{implicit} geometric intersection graphs, where the vertices are\\nexplicitly given but not the edges. As a concrete example, we consider $n$\\ndisks in the plane with arbitrary radii and present two different approximation\\nalgorithms.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\newcommand{cardin}[1]{\left| {#1}\right|}%\newcommand{\Graph}{\Mh{\mathsf{G}}}% \providecommand{\G}{\Graph}%\renewcommand{\G}{\Graph}% \providecommand{\GA}{\Mh{H}}%\renewcommand{\GA}{\Mh{H}}%\newcommand{\VV}{\Mh{\mathsf{V}}}%\newcommand{\VX}[1]{\VV\pth{#1}}%\providecommand{\EE}{\Mh{\mathsf{E}}}%\renewcommand{\EE}{\Mh{\mathsf{E}}}% \newcommand{\Re}{\mathbb{R}}\newcommand{\reals}{\mathbb{R}}\newcommand{\SetX}{\mathsf{X}}\newcommand{\rad}{r}\newcommand{\Mh}[1]{#1}\newcommand{query}{q}\newcommand{\eps}\{varepsilon}\newcommand{\VorX}[1]{\mathcal{V}\pth{#1}}\newcommand{\Polygon}{\mathsf{P}}\newcommand{\IntRange}[1]{[ #1 ]}\newcommand{\Space}{\overline{\mathsf{m}}}\newcommand{\pth}[2][\!]{#1\left({#2}\right)}\newcommand{\polylog}{\mathrm{polylog}}\newcommand{N}{mathbb N}\newcommand{Z}\{mathbb Z}\新命令{pt}{p}。\newcommand{\distY}[2]{\left\|{#1}- {#2}\right\|}\newcommand{ptq}{q}\newcommand{pts}{s}$ 对于一个无向图 $\mathsf{G}=(\mathsf{V}, \mathsf{E})$, 有$n$顶点和$m$边,emph{densest subgraph}问题、是计算一个子集 $S\subseteq \mathsf{V}$,它能使比率 $|mathsf{E}_S| / |S|$最大化,其中$mathsf{E}_S \subseteq \mathsf{E}$是$mathsf{G}$中所有端点在$S$的边的集合。最密子图问题是计算机科学中一个研究得很透彻的问题。计算最密集子图的现有精确算法和近似算法都需要 $\Omega(m)$ 时间。我们提出了几何交集图上最密子图问题的近线性时间($n$)近似算法,其中顶点是明确给出的,但边没有给出。作为一个具体例子,我们考虑了平面上具有任意半径的 $n$ 圆盘,并提出了两种不同的近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Densest Subgraph in Geometric Intersection Graphs
$ \newcommand{\cardin}[1]{\left| {#1} \right|}% \newcommand{\Graph}{\Mh{\mathsf{G}}}% \providecommand{\G}{\Graph}% \renewcommand{\G}{\Graph}% \providecommand{\GA}{\Mh{H}}% \renewcommand{\GA}{\Mh{H}}% \newcommand{\VV}{\Mh{\mathsf{V}}}% \newcommand{\VX}[1]{\VV\pth{#1}}% \providecommand{\EE}{\Mh{\mathsf{E}}}% \renewcommand{\EE}{\Mh{\mathsf{E}}}% \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\ptq}{q} \newcommand{\pts}{s}$ For an undirected graph $\mathsf{G}=(\mathsf{V}, \mathsf{E})$, with $n$ vertices and $m$ edges, the \emph{densest subgraph} problem, is to compute a subset $S \subseteq \mathsf{V}$ which maximizes the ratio $|\mathsf{E}_S| / |S|$, where $\mathsf{E}_S \subseteq \mathsf{E}$ is the set of all edges of $\mathsf{G}$ with endpoints in $S$. The densest subgraph problem is a well studied problem in computer science. Existing exact and approximation algorithms for computing the densest subgraph require $\Omega(m)$ time. We present near-linear time (in $n$) approximation algorithms for the densest subgraph problem on \emph{implicit} geometric intersection graphs, where the vertices are explicitly given but not the edges. As a concrete example, we consider $n$ disks in the plane with arbitrary radii and present two different approximation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信